Odpowiedź:
W( x) = [tex]x^4 - 2 x^3 - 11 x^2 + 12 x + 36 = x^4 - 3 x^3 + x^3 - 3 x^2 - 8 x^2 + 24 x - 12 x + 36 =[/tex]
[tex]x^3*(x - 3) + x^2*(x - 3) - 8 x*(x - 3) - 12*(x - 3) = ( x - 3)*(x^3 + x^2 - 8 x - 12 ) =[/tex]
[tex]= ( x -3)*[ x^3 - 3 x^2 + 4 x^2 -12 x + 4 x - 12 ] =\\ =( x - 3)*[ x^2*(x - 3) + 4 x*(x - 3) + 4*(x - 3)] =\\= (x -3)*(x- 3)*(x^2 + 4 x + 4) = ( x - 3)^2*(x + 2)^2[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
W( x) = [tex]x^4 - 2 x^3 - 11 x^2 + 12 x + 36 = x^4 - 3 x^3 + x^3 - 3 x^2 - 8 x^2 + 24 x - 12 x + 36 =[/tex]
[tex]x^3*(x - 3) + x^2*(x - 3) - 8 x*(x - 3) - 12*(x - 3) = ( x - 3)*(x^3 + x^2 - 8 x - 12 ) =[/tex]
[tex]= ( x -3)*[ x^3 - 3 x^2 + 4 x^2 -12 x + 4 x - 12 ] =\\ =( x - 3)*[ x^2*(x - 3) + 4 x*(x - 3) + 4*(x - 3)] =\\= (x -3)*(x- 3)*(x^2 + 4 x + 4) = ( x - 3)^2*(x + 2)^2[/tex]
Szczegółowe wyjaśnienie: