rownanie x^2 + y^2 + 6ax + 8 = 0 opisuje okrąg o środku (3,0) jeśli
x^2 + y^2 + 6a x + 8 = 0
( x + 3a)^2 - 9 a^2 + y^2 + 8 = 0
( x + 3a)^2 + y^2 = 9 a^2 - 8
więc
3a = - 3
a = - 1
==========
wtedy r^2 = 9*1 - 8 = 1
x^2+6ax+9a^2-9a^2+y^2+8=0 uzupek do wzoru skroconego aby odczytac postac ogolna
(x+3a)^2+y^2=9a^2-8
S(-3a;0) r^2=9a^2-8
-3a=3 r>0
a=-1 dla a=-1 r=\/(9-8)=1
rownanie opisuje okrag jesli a=--1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x^2 + y^2 + 6a x + 8 = 0
( x + 3a)^2 - 9 a^2 + y^2 + 8 = 0
( x + 3a)^2 + y^2 = 9 a^2 - 8
więc
3a = - 3
a = - 1
==========
wtedy r^2 = 9*1 - 8 = 1
x^2+6ax+9a^2-9a^2+y^2+8=0 uzupek do wzoru skroconego aby odczytac postac ogolna
(x+3a)^2+y^2=9a^2-8
S(-3a;0) r^2=9a^2-8
-3a=3 r>0
a=-1 dla a=-1 r=\/(9-8)=1
rownanie opisuje okrag jesli a=--1