Jawab:
35
Penjelasan dengan langkah-langkah:
•
Misal :
a'log b = x → b'log a = 1/x
(x + 1/x)² = (√1229)²
x² + 1/x² = 1229 - 2 = 1227
(1/x - x)² = x² + 1/x² - 2 = 1225
1/(ab)'log b - 1/(ab)'log a
= b'log ab - a'log ab
= (b'log a + 1) - (1 + a'log b)
= b'log a - a'log b
= 1/x - x
= √1225
= 35
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
35
Penjelasan dengan langkah-langkah:
•
Misal :
a'log b = x → b'log a = 1/x
(x + 1/x)² = (√1229)²
x² + 1/x² = 1229 - 2 = 1227
(1/x - x)² = x² + 1/x² - 2 = 1225
1/(ab)'log b - 1/(ab)'log a
= b'log ab - a'log ab
= (b'log a + 1) - (1 + a'log b)
= b'log a - a'log b
= 1/x - x
= √1225
= 35