Przyjmijmy że komórka plastra budowanego przez pszczoły ma kształt graniastosłupa prawidłowego sześciokątnego, którego krawędź podstawy ma długość 3 mm, a wysokość 12 mm. Oblicz objętość jednej komórki. Czy wystarcz opróżnić 3000 komórek pełnych miodu, by napełnić miodem litrowy słój?
wysokość = 12 mm
V= Pp × h
Podstawa to sześciokąt
Nie zmam wzoru na pole sześciokąta więc dziele go na 6 trójkątów równobocznych (tak jak na rysunku w załączniku)
P trójkąta = a × h ÷ 2
P = 3 mm × 3 mm÷ 2
P = 9mm ÷ 2
P = 4, 5 mm ²
Pole sześciu trójkątów = 4,5 mm ² × 6 = 27 mm ²
Pp = 27 mm ²
V= Pp × h
V= 27 mm ² × 12 mm = 324 mm ³
V = 324 mm ³
__________________
3000 komórek
324 × 3000 = 972 000 mm³
1l = 1000 ml
1 ml = 1 cm ³
1 cm ³ = 1000 mm ³
1l = 1000 cm ³
1l = 1 000 000 mm ³
1 000 000 mm ³ - 972 000 mm ³ = 28 000 mm ³ ( jeszce tyle pozostanie czyli wystarczy)
Odp.: Wystarczy opróżnić 3000 komórek pełnych miodu, by napełnić miodem litrowy słój.