[2- (x^2 - x + 1)/(4x^3 + 4) * (4x^2 + 8x + 4)/ (3 - x)]: (10 - x - 3x^2)/ (x^2 - 9) =
(te znaczki "/" prosze traktować jako kreski ułamkowe dotyczące funkcji w "()"; zaś "^" potegi)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[2 - (x²-x+1)/(4x³+4) · (4x²+8x+4)/(3-x)] : (10-x-3x²)/(x²-9) =
= {2 - (x²-x+1)/[4(x+1)(x²-x+1)] · [4(x²+2x+1)]/(3-x) } · [(x-3)(x+3)]/(-3x²-x+10) =
= { 2 -(x²+2x+1)/[(x+1)(3-x)]} · [(x-3)(x+3)]/[-(x+2)(x-1⅔)] = Δ=1+120=121
= [2(x+1)(3-x) -x²-2x-1]/[(x+1)(3-x)] · [(x-3)(x+3)]/[-(x+2)(x-1⅔)]= √Δ=11
= [2(3x-x²+3-x)-x²-2x-1]/[(x+1)(3-x)] · [(x-3)(x+3)]/[-(x+2)(x-1⅔)] = x₁=-2, x₂=1⅔
= (6x-2x²+6-2x-x²-2x-1)/[(x+1)(x-3) · [(x-3)(+3)]/[(x+2)(x-1⅔)] =
= [(-3x²+2x+5)(x+3)] / [(x+1)(x+2)(x-1⅔)] = -3x²+2x+5=0
= [-(x+1)(x-1⅔)(x+3)]/[(x+1)(x+2)(x-1⅔)] = Δ=4+60 = 64, √Δ=8
= [-(x+3)]/(x+2) = x₁= -1, x₂ = 1⅔
= (-x-3)/(x+2) D=R\{3, -3, -2, -1, 1⅔}