Proszę rozwiązać te zadania z załącznika,potrzebuje ich na jutro.Daje najjjj!
z.1
a = 6
alfa = 60 st
Dzielimy romb na dwa trójkaty równoboczne.
h - wysokośc trójkąta równobocznego
h =a p(3)/2 = 6*[(3)/2 = 3 p(3)
Odp.A
========
z.2
b = 3
tg gamma = 3,5
Mamy
a/3 = tg gamma = 3,5
a = 3,5 * 3 = 10,5
Z tw. Pitagorasa mamy
a^2 + b^2 = c^2
c^2 = 10,5^2 + 3^2 = 110,25 + 9 = 119,25 = 119 1/4 = 477/4 = ( 9*53)/4
c = (3/2) p( 53)
==================
p(53) - pierwiastek kwadratowyz 53
----------------------------------------------------------------------------------
z.3
tg delta = 5/ d
czyli
2/3 = 5/d
2*d = 5*3
2 d = 15 / : 2
d = 7,5
===================
z.4
Z tw. cosinusów mamy
b^2 = 2^2 + [ p(3)]^2 - 2*2*p(3)*cos 120 st =
= 4 + 3 - 4 p(3)* cos ( 90 +30) st =
= 7 - 4 p(3) * ( - sin ( 30 st)) =
= 7 + 4 p(3) *(1/2) = 7 + 2 p(3)
zatem
b = p [ 7 + 2 p(3)]
=========================
II sposób - w załączeniu
---------------------------------------------
z.5
sin alfa = 3/7
sin^2 alfa + cos^2 alfa = 1
cos^2 alfa = 1 - sin^2 alfa = 1 - (3/7)^2 = 1 - 9/49 = 49/49 - 9/49 = 40/49
cos^2 alfa = ( 4*10)/49 = ( 4/49) * 10
cos alfa = (2/7) p(10) = ( 2 p(10))/ 7
Odp. D
p(10) - pierwiastek kwadratowy z 10
--------------------------------------------------------------------------
z.6
a = 12
b = 5
c = 13
cos alfa = a/c = 12/13
Odp. C
Dodatkowo : tg alfa = b/a = 5/12
-------------------------------------------------------------
z.7
I < C I = 90 st
I BC I = p(3)
I AC I = 3
tg ( < A ) = p(3)/ 3 , więc I < A I = 30 st
I < B I = 90 st - 30 st = 60 st
===============================
lub inaczej
tg ( < B ) = 3 / p(3) = p(30, więc I < B I = 60 st
----------------------------------------------------------------------
z.8
sin alfa = 2/5
sin alfa = y/r , więc y = 2, r = 5
x^2 + y^2 = r^2
x^2 + 2^2 = 5^2
x^2 + 4 = 25
x^2 = 25 - 4 = 21
x = - p(21) lub x = p(21)
cos alfa = x/r
cos alfa = - p(21)/5 lub cos alfa = p(21)/5
============================================
tg alfa = y/x
tg alfa = 2/ [ - p(21)] = - ( 2 p(21))/21
lub
tg alfa = ( 2 p(21))/21
======================
p(21) - pierwiastek kwadratowy z 21
------------------------------------------------
ctg alfa = 1/ tg alfa
ctg alfa = - p(21)/ 2 lub ctg alfa = p(21)/2
==================================================
z.9
tg alfa = p(5) = p(5)/1
zatem x = 1 , y = p(5)
r^2 = x^2 + y^2 = 1^2 + [ p(5)]^2 = 1 + 5 = 6
r = p(6)
----------
sin alfa = y/r = p(5)/ p(6) = p(30)/6
cos alfa = x/r = 1/p(6) = p(6)/6
ctg alfa = 1/tg alga = 1/ p(5) = p(5)/5
================================================
z.10
W załączniku
=======================
z.11
Coś z danymi
========================
z.12
h/ 3 = sin 20 st = 0,342
h = 0,342* 3 = 1,026
Odp. h = 1,026 km
=============================
z.13
h - wysokość drzewa
h / 10 = tg 57 st
h = 10* tg 57 st = 10 * 1,5399 = 15,399
Odp. h = 15,399 m = około 15,40 m
======================================
z.14
x - odległość mocowania od podstawy masztu
y - długośc liny
30/x = tg 35 st
x = 30 : tg 35 st = 30 : 0,7002 = 42,84
oraz
30/y = sin 35 st
y = 30 : sin 35 st = 30 : 0,5736 = 52,30
Odp.Liny mają długość 52,3 m
Mocowania do lin należy przygotować w odległości 42,84 m od masztu.
================================================================
ROZWIĄZANIA W ZAŁĄCZNIKU :)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
a = 6
alfa = 60 st
Dzielimy romb na dwa trójkaty równoboczne.
h - wysokośc trójkąta równobocznego
h =a p(3)/2 = 6*[(3)/2 = 3 p(3)
Odp.A
========
z.2
b = 3
tg gamma = 3,5
Mamy
a/3 = tg gamma = 3,5
a = 3,5 * 3 = 10,5
Z tw. Pitagorasa mamy
a^2 + b^2 = c^2
c^2 = 10,5^2 + 3^2 = 110,25 + 9 = 119,25 = 119 1/4 = 477/4 = ( 9*53)/4
c = (3/2) p( 53)
==================
p(53) - pierwiastek kwadratowyz 53
----------------------------------------------------------------------------------
z.3
tg delta = 5/ d
czyli
2/3 = 5/d
2*d = 5*3
2 d = 15 / : 2
d = 7,5
===================
z.4
Z tw. cosinusów mamy
b^2 = 2^2 + [ p(3)]^2 - 2*2*p(3)*cos 120 st =
= 4 + 3 - 4 p(3)* cos ( 90 +30) st =
= 7 - 4 p(3) * ( - sin ( 30 st)) =
= 7 + 4 p(3) *(1/2) = 7 + 2 p(3)
zatem
b = p [ 7 + 2 p(3)]
=========================
II sposób - w załączeniu
---------------------------------------------
z.5
sin alfa = 3/7
sin^2 alfa + cos^2 alfa = 1
zatem
cos^2 alfa = 1 - sin^2 alfa = 1 - (3/7)^2 = 1 - 9/49 = 49/49 - 9/49 = 40/49
cos^2 alfa = ( 4*10)/49 = ( 4/49) * 10
cos alfa = (2/7) p(10) = ( 2 p(10))/ 7
Odp. D
========
p(10) - pierwiastek kwadratowy z 10
--------------------------------------------------------------------------
z.6
a = 12
b = 5
c = 13
zatem
cos alfa = a/c = 12/13
Odp. C
========
Dodatkowo : tg alfa = b/a = 5/12
-------------------------------------------------------------
z.7
I < C I = 90 st
I BC I = p(3)
I AC I = 3
zatem
tg ( < A ) = p(3)/ 3 , więc I < A I = 30 st
czyli
I < B I = 90 st - 30 st = 60 st
===============================
lub inaczej
tg ( < B ) = 3 / p(3) = p(30, więc I < B I = 60 st
----------------------------------------------------------------------
z.8
sin alfa = 2/5
sin alfa = y/r , więc y = 2, r = 5
Mamy
x^2 + y^2 = r^2
x^2 + 2^2 = 5^2
x^2 + 4 = 25
x^2 = 25 - 4 = 21
x = - p(21) lub x = p(21)
cos alfa = x/r
zatem
cos alfa = - p(21)/5 lub cos alfa = p(21)/5
============================================
tg alfa = y/x
zatem
tg alfa = 2/ [ - p(21)] = - ( 2 p(21))/21
lub
tg alfa = ( 2 p(21))/21
======================
p(21) - pierwiastek kwadratowy z 21
------------------------------------------------
ctg alfa = 1/ tg alfa
zatem
ctg alfa = - p(21)/ 2 lub ctg alfa = p(21)/2
==================================================
z.9
tg alfa = p(5) = p(5)/1
tg alfa = y/x
zatem x = 1 , y = p(5)
r^2 = x^2 + y^2 = 1^2 + [ p(5)]^2 = 1 + 5 = 6
r = p(6)
----------
sin alfa = y/r = p(5)/ p(6) = p(30)/6
cos alfa = x/r = 1/p(6) = p(6)/6
ctg alfa = 1/tg alga = 1/ p(5) = p(5)/5
================================================
z.10
W załączniku
=======================
z.11
Coś z danymi
========================
z.12
h/ 3 = sin 20 st = 0,342
h = 0,342* 3 = 1,026
Odp. h = 1,026 km
=============================
z.13
h - wysokość drzewa
Mamy
h / 10 = tg 57 st
h = 10* tg 57 st = 10 * 1,5399 = 15,399
Odp. h = 15,399 m = około 15,40 m
======================================
z.14
x - odległość mocowania od podstawy masztu
y - długośc liny
Mamy
30/x = tg 35 st
x = 30 : tg 35 st = 30 : 0,7002 = 42,84
oraz
30/y = sin 35 st
y = 30 : sin 35 st = 30 : 0,5736 = 52,30
Odp.Liny mają długość 52,3 m
Mocowania do lin należy przygotować w odległości 42,84 m od masztu.
================================================================
ROZWIĄZANIA W ZAŁĄCZNIKU :)