Proszę o rozwiązanie zadań w załączniku.
8.
a) W(x) = x²(x² - 2) = x²(x - √2)(x + √2)
b) W(x) = x³(6x² - x + 1)
Δ = 1 - 24 = -23 < 0 czyli ta funkcja w nawiasie już nie da się rozłożycz na iloczyn
9.
a)
x³ + 5x² - x - 5 = 0
x²(x + 5) - (x + 5) = 0
(x +5)(x² - 1) = 0
(x + 5)(x - 1)(x + 1) = 0
x + 5 = 0 lub x - 1 = 0 lub x + 1 = 0
x = -5 lub x = 1 lub x = -1
b)
x² (x - 3)³ ( x + 1) = 0
x² = 0 lub (x - 3)³ = 0 lub x + 1 = 0
x = 0 lub x - 3 = 0 lub x = -1
x = 3
c)
x³ - 7x - 6 = 0
x³ - x - 6x - 6 = 0
x(x² - 1) - 6(x + 1) = 0
x(x - 1)(x +1) - 6(x + 1) = 0
(x + 1)[x(x - 1) - 6] = 0
x + 1 = 0 lub x² - x - 6 = 0
x = -1 lub Δ = 1 + 24 = 25
x1 = (1 - 5)/2 = -4/2 = -2
x2 = (1 +5)/2 = 6/2 = 3
odp. x = -1 lub x = -2 lub x = 3
d)
-(x² - x) (x² - 4x + 4) = 0
-x(x - 1)(x - 2)² = 0
-x = 0 lub x - 1 = 0 lub x - 2 = 0
x = 0 lub x = 1 lub x = 2
11.
y = -1 / x
y = -1 / (x + 1) + 3 ----- wykres który otrzymamy po przesunięciu
D : x + 1 ≠ 0
x ≠ -1
D = R \ {-1} --- dziedzina otrzymamnej funkcji
12.
3 / (x + 2) + 4 / ( x - 3) = 3(x - 3)/ [(x + 2)(x - 3)] + 4(x + 2) / [(x + 2)(x - 3)] =
(3x - 9 + 4x + 8) / [(x + 2)(x - 3)] = (7x - 1) / [(x + 2)(x - 3)]
...= (x - 1) / (x + 1) * x²(x + 1) / [(x² - 1)(x²+1)] = x²(x - 1) / [(x - 1)(x + 1)(x² + 1)] = x² / [(x + 1)(x² + 1)
... = (x + 1)² / (x - 4) * [(x - 4)(x + 4)] / (x +1) = (x + 1)(x +4) = x² + 5x + 4
13
(5x + 4) / (2x - 1) = 3
zał. 2x - 1 ≠ 0
2x ≠ 1
D: x ≠ 1/2
(5x + 4) / (2x - 1) = 3 / 1
3(2x - 1) = 5x + 4
6x - 3 = 5x + 4
6x - 5x = 4 +3
x = 7 ∈ D
odp. x = 7
zał. 2x - 1 ≠ 0 i x ≠ 0
x ≠ 1/2
D = R \ {1/2; 0}
(x + 1) / (2x - 1) = 2 / x
2(2x -1) = x(x +1)
4x - 2 = x² + x
x² + x - 4x + 2 = 0
x² - 3x + 2 = 0
Δ = 9 - 8 = 1
x1 = (3 - 1) / 2 = 2/2 = 1 ∈ D
x2 = (3 +1) / 2 = 4/2 = 2 ∈ D
ODP. X = 1 LUB X = 2
14.
zal. x ≠ 0
2 * x ≤ 0
x ≤ 0 i x ≠ 0
odp. x ∈ (-oo, 0)
zał. x ≠ 0
1 / x > - 2
1/x + 2 > 0
1/x + 2x/x > 0
(1 + 2x) / x > 0
(1 + 2x) * x > 0
x(1 + 2x) > 0
x = 0 1 + 2x = 0
2x = -1
x = -1/2
odp. x ∈ (-oo, -1/2) u (0, +oo)
Zad.8
a) W(x) = x^4 - 2x² = x²(x-√2)(x+√2)
b) W(x) = 6x^5 - x^4 + x^3 = x³(6x²-x+1)
6x²-x+1 = 0
Δ = 1-24 = -23 < 0 , nie da się rozłożyć na iloczyn
Zad.9
x³+5x²-x-5 = 0
x²(x+5)-(x+5) = 0
(x²-1)(x+5) = (x+5)(x+1)(x-1) = 0
x+5 = 0 => x = -5
lub
x+1 = 0 => x = -1
x-1 = 0 => x = 1
Odp. x = -5 v x = -1 v x = 1
x²(x-3)²*(x+1) = 0
x² = 0 => x = 0
x-3 = 0 => x = 3
Odp. x = -1 v x = 0 v x = 3
x³-7x-6 = 0
x³-x-6x-6 = 0
x(x²-1)-6(x+1) = 0
x(x+1)(x-1)-6(x1) = 0
(x+1)[x(x-1)-6] = 0
(x+1)(x²-x-6) = 0
x²-x-6 = 0
Δ = 1+24 = 25
√Δ = 5
x1 = (1-5)/2 = -2
x2 = (1+5)/2 = 3
Odp. x = -2 v x = -1 v x = 3
-(x²-x)(x²-4x+4) = 0
-x(x-1)(x-2)² = 0
x = 0
x-2 = 0 => x = 2
Odp. x = 0 v x = 1 v x = 2
Zad.11.
y = -1/x, u=[-1;3]
y" = -1/(x+1) +3
D: x≠-1
Zad,12
3/(x+2) + 4/(x-3) = [3(x-3)+4(x=2)]/[(x+2)(x-3)] = (3x-9+4x+8)/[(x+2(x-3) =
= (7x-1)/[(x+2)(x-3)]
Z:x ≠ -2
x ≠ 3
[(x-1)/(x+1)] *(x³+x²)/(x^4 -1) = [(x-1)(x+10] * x²(x=10/[(x²-1)(x²+1)] =
= x²(x-1)/[(x-1)(x+1)(x²+1)] = x²/[(x=1)(x²+1)]
[(x²+2x+1)/(x-4)] : (x+1)/(x²-16) = [(x+1)²/(x-4)] * [(x-4)(x+4)]/(x+1) =
= (x+1)(x+4) = x²+5x+4
Zad.13
(5x+4)/(2x-1) = 3
3(2x-1) = 5x+4
6x-3 = 5x+4
6x-5x = 4+3
x = 7
====
Z: x ≠ 1/2
(x+1)/(2x-1) - 2/x + 0
(x+1)/(2x-1 = 2/x
x(x+1) = 2(2x-1)
x²+x = 4x-2
x²-3x+2 = 0
Δ = 9-8 = 1
√Δ = 1
x1 = (3-1)/2 = 1
x2 = (3+1)/2 = 2
Z:x ≠ 1/2
x ≠ 0
Zad.14
2/x ≤ 0
2*x ≤ 0 /:2
x ≤ 0
Z: x ≠ 0
x < 0
1/x > -2
(1+2x)/x > 0
x(1+2x) > 0
x+2x² > 0
x > 0
1+2x > 0 => x > -1/2
x ∈ (-∞; -1/2) u (0; +∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
8.
a) W(x) = x²(x² - 2) = x²(x - √2)(x + √2)
b) W(x) = x³(6x² - x + 1)
Δ = 1 - 24 = -23 < 0 czyli ta funkcja w nawiasie już nie da się rozłożycz na iloczyn
9.
a)
x³ + 5x² - x - 5 = 0
x²(x + 5) - (x + 5) = 0
(x +5)(x² - 1) = 0
(x + 5)(x - 1)(x + 1) = 0
x + 5 = 0 lub x - 1 = 0 lub x + 1 = 0
x = -5 lub x = 1 lub x = -1
b)
x² (x - 3)³ ( x + 1) = 0
x² = 0 lub (x - 3)³ = 0 lub x + 1 = 0
x = 0 lub x - 3 = 0 lub x = -1
x = 3
c)
x³ - 7x - 6 = 0
x³ - x - 6x - 6 = 0
x(x² - 1) - 6(x + 1) = 0
x(x - 1)(x +1) - 6(x + 1) = 0
(x + 1)[x(x - 1) - 6] = 0
x + 1 = 0 lub x² - x - 6 = 0
x = -1 lub Δ = 1 + 24 = 25
x1 = (1 - 5)/2 = -4/2 = -2
x2 = (1 +5)/2 = 6/2 = 3
odp. x = -1 lub x = -2 lub x = 3
d)
-(x² - x) (x² - 4x + 4) = 0
-x(x - 1)(x - 2)² = 0
-x = 0 lub x - 1 = 0 lub x - 2 = 0
x = 0 lub x = 1 lub x = 2
11.
y = -1 / x
y = -1 / (x + 1) + 3 ----- wykres który otrzymamy po przesunięciu
D : x + 1 ≠ 0
x ≠ -1
D = R \ {-1} --- dziedzina otrzymamnej funkcji
12.
a)
3 / (x + 2) + 4 / ( x - 3) = 3(x - 3)/ [(x + 2)(x - 3)] + 4(x + 2) / [(x + 2)(x - 3)] =
(3x - 9 + 4x + 8) / [(x + 2)(x - 3)] = (7x - 1) / [(x + 2)(x - 3)]
b)
...= (x - 1) / (x + 1) * x²(x + 1) / [(x² - 1)(x²+1)] = x²(x - 1) / [(x - 1)(x + 1)(x² + 1)] = x² / [(x + 1)(x² + 1)
c)
... = (x + 1)² / (x - 4) * [(x - 4)(x + 4)] / (x +1) = (x + 1)(x +4) = x² + 5x + 4
13
a)
(5x + 4) / (2x - 1) = 3
zał. 2x - 1 ≠ 0
2x ≠ 1
D: x ≠ 1/2
(5x + 4) / (2x - 1) = 3 / 1
3(2x - 1) = 5x + 4
6x - 3 = 5x + 4
6x - 5x = 4 +3
x = 7 ∈ D
odp. x = 7
b)
zał. 2x - 1 ≠ 0 i x ≠ 0
x ≠ 1/2
D = R \ {1/2; 0}
(x + 1) / (2x - 1) = 2 / x
2(2x -1) = x(x +1)
4x - 2 = x² + x
x² + x - 4x + 2 = 0
x² - 3x + 2 = 0
Δ = 9 - 8 = 1
x1 = (3 - 1) / 2 = 2/2 = 1 ∈ D
x2 = (3 +1) / 2 = 4/2 = 2 ∈ D
ODP. X = 1 LUB X = 2
14.
a)
zal. x ≠ 0
2 * x ≤ 0
x ≤ 0 i x ≠ 0
odp. x ∈ (-oo, 0)
b)
zał. x ≠ 0
1 / x > - 2
1/x + 2 > 0
1/x + 2x/x > 0
(1 + 2x) / x > 0
(1 + 2x) * x > 0
x(1 + 2x) > 0
x = 0 1 + 2x = 0
2x = -1
x = -1/2
odp. x ∈ (-oo, -1/2) u (0, +oo)
Zad.8
a) W(x) = x^4 - 2x² = x²(x-√2)(x+√2)
b) W(x) = 6x^5 - x^4 + x^3 = x³(6x²-x+1)
6x²-x+1 = 0
Δ = 1-24 = -23 < 0 , nie da się rozłożyć na iloczyn
Zad.9
a)
x³+5x²-x-5 = 0
x²(x+5)-(x+5) = 0
(x²-1)(x+5) = (x+5)(x+1)(x-1) = 0
x+5 = 0 => x = -5
lub
x+1 = 0 => x = -1
lub
x-1 = 0 => x = 1
Odp. x = -5 v x = -1 v x = 1
b)
x²(x-3)²*(x+1) = 0
x² = 0 => x = 0
lub
x-3 = 0 => x = 3
lub
x+1 = 0 => x = -1
Odp. x = -1 v x = 0 v x = 3
c)
x³-7x-6 = 0
x³-x-6x-6 = 0
x(x²-1)-6(x+1) = 0
x(x+1)(x-1)-6(x1) = 0
(x+1)[x(x-1)-6] = 0
(x+1)(x²-x-6) = 0
x+1 = 0 => x = -1
lub
x²-x-6 = 0
Δ = 1+24 = 25
√Δ = 5
x1 = (1-5)/2 = -2
x2 = (1+5)/2 = 3
Odp. x = -2 v x = -1 v x = 3
d)
-(x²-x)(x²-4x+4) = 0
-x(x-1)(x-2)² = 0
x = 0
lub
x-1 = 0 => x = 1
lub
x-2 = 0 => x = 2
Odp. x = 0 v x = 1 v x = 2
Zad.11.
y = -1/x, u=[-1;3]
y" = -1/(x+1) +3
D: x≠-1
Zad,12
a)
3/(x+2) + 4/(x-3) = [3(x-3)+4(x=2)]/[(x+2)(x-3)] = (3x-9+4x+8)/[(x+2(x-3) =
= (7x-1)/[(x+2)(x-3)]
Z:x ≠ -2
x ≠ 3
b)
[(x-1)/(x+1)] *(x³+x²)/(x^4 -1) = [(x-1)(x+10] * x²(x=10/[(x²-1)(x²+1)] =
= x²(x-1)/[(x-1)(x+1)(x²+1)] = x²/[(x=1)(x²+1)]
c)
[(x²+2x+1)/(x-4)] : (x+1)/(x²-16) = [(x+1)²/(x-4)] * [(x-4)(x+4)]/(x+1) =
= (x+1)(x+4) = x²+5x+4
Zad.13
a)
(5x+4)/(2x-1) = 3
3(2x-1) = 5x+4
6x-3 = 5x+4
6x-5x = 4+3
x = 7
====
Z: x ≠ 1/2
b)
(x+1)/(2x-1) - 2/x + 0
(x+1)/(2x-1 = 2/x
x(x+1) = 2(2x-1)
x²+x = 4x-2
x²-3x+2 = 0
Δ = 9-8 = 1
√Δ = 1
x1 = (3-1)/2 = 1
x2 = (3+1)/2 = 2
Z:x ≠ 1/2
x ≠ 0
Zad.14
a)
2/x ≤ 0
2*x ≤ 0 /:2
x ≤ 0
Z: x ≠ 0
x < 0
b)
1/x > -2
1/x + 2 > 0
(1+2x)/x > 0
x(1+2x) > 0
x+2x² > 0
x(1+2x) > 0
x > 0
lub
1+2x > 0 => x > -1/2
Z: x ≠ 0
x ∈ (-∞; -1/2) u (0; +∞)