1.zapisz liczbę w postaci a^2, gdzie a należy do N, x należy do W
2.rozwiąż równanie
1) √8 znajduje sie za potęgą
3¹/⁸ * 12³/⁴ : √8 = 3¹/⁸ * 3 ³/⁴ * 4³/⁴ : 2²/³ =
=3¹/⁸ * 3⁶/⁸ * (2²)³/⁴ : 2²/³ = 3⁷/⁸ * 2³/² : 2³/² = 3⁷/⁸ * 1 =
=3⁷/⁸ = (3⁷/¹⁶)²
2)
D: x≠0 U 2x+1≠0
x≠-1/2
x∈R\{-1/2 , 0}
(x+1)/x = (x+1)/2x+1 <---- mnozyy na krzyz
(x+1)(2x+1) = x(x+1)
2x²+x+2x+1 = x²+x
x²+2x+1=0
Δ=2² - 4*1*1=4-4=0
x=-2/2=-1 ∈D
odp:
x=-1
-----------------------------------------------------------------------------
D: 2x-1≠0 U x≠0
x≠1/2
x∈R\{0 , 1/2}
(x+1)/(2x-1) - 2/x = 0 <---- sprowadzamy do wspólnego mianownika
[(x+1)x - 2(2x-1)]/x(2x-1) = 0
[x²+x -4x+2 ]/ x(2x-1) = 0
x²-3x+2 = 0
Δ=9-4*2 = 1 ,√Δ=1
x1=(3-1)/2=2/2=1 ∈D
x2 = (3+1)/2=4/2=2 ∈D
x=1 U x=2
------------------------------------------------------------------------------------
x/-3 = -5/x+2 <----- mnozymy na krzyz (D: x≠-2)
x(x+2) = 15
x²+2x-15=0
Δ=4 + 60 = 64 , √Δ=8
x1=(-2-8)/2 = -10/2=-5 ∈D
x2=(-2+8)/2 = 6/2=3 ∈D
x=-5 U x=3
-----------------------------------------------------------------------------------------
x = 5x+3/2x (D: x≠0)
x/1 = 5x+3 /2x <---------- mnozymy na krzyz
x*2x = 1*(5x+3)
2x² - 5x - 3 = 0
Δ=25 + 24=49 , √Δ = 7
x1=(5-7)/4 = -2/4=-1/2 ∈D
x2=(5+7)/4 = 12/4=3 ∈D
ODP:
x=-1/2 U x=3
---------------------------------------------------------------------------------------
x+1 = (2-2x)/(x-1) D: x≠1
(x+1)/1 = (2-2x)/(x-1) <----------mnozymy na krzyz
(x+1)(x-1) = (2-2x)*1 <--------- z wzoru (a+b)(a-b)=a²-b²
x² -1 -2+2x = 0
x²+2x-3=0
Δ=4 + 12=16 , √Δ=4
x1=(-2-4)/2=-6/2=-3 ∈ D
x2=(-2+4)/2 = 2/2=1 ∉D (nie nalezy)
x=-3
-------------------------------------------------------------------------
wzory:
Δ=b²-4ac
gdy Δ>0, to x1=(-b-√Δ)/2a , x2=(-b+√Δ)/2a
Δ=0 , to x = -b/2a
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1) √8 znajduje sie za potęgą
3¹/⁸ * 12³/⁴ : √8 = 3¹/⁸ * 3 ³/⁴ * 4³/⁴ : 2²/³ =
=3¹/⁸ * 3⁶/⁸ * (2²)³/⁴ : 2²/³ = 3⁷/⁸ * 2³/² : 2³/² = 3⁷/⁸ * 1 =
=3⁷/⁸ = (3⁷/¹⁶)²
2)
D: x≠0 U 2x+1≠0
x≠-1/2
x∈R\{-1/2 , 0}
(x+1)/x = (x+1)/2x+1 <---- mnozyy na krzyz
(x+1)(2x+1) = x(x+1)
2x²+x+2x+1 = x²+x
x²+2x+1=0
Δ=2² - 4*1*1=4-4=0
x=-2/2=-1 ∈D
odp:
x=-1
-----------------------------------------------------------------------------
D: 2x-1≠0 U x≠0
x≠1/2
x∈R\{0 , 1/2}
(x+1)/(2x-1) - 2/x = 0 <---- sprowadzamy do wspólnego mianownika
[(x+1)x - 2(2x-1)]/x(2x-1) = 0
[x²+x -4x+2 ]/ x(2x-1) = 0
x²-3x+2 = 0
Δ=9-4*2 = 1 ,√Δ=1
x1=(3-1)/2=2/2=1 ∈D
x2 = (3+1)/2=4/2=2 ∈D
odp:
x=1 U x=2
------------------------------------------------------------------------------------
x/-3 = -5/x+2 <----- mnozymy na krzyz (D: x≠-2)
x(x+2) = 15
x²+2x-15=0
Δ=4 + 60 = 64 , √Δ=8
x1=(-2-8)/2 = -10/2=-5 ∈D
x2=(-2+8)/2 = 6/2=3 ∈D
odp:
x=-5 U x=3
-----------------------------------------------------------------------------------------
x = 5x+3/2x (D: x≠0)
x/1 = 5x+3 /2x <---------- mnozymy na krzyz
x*2x = 1*(5x+3)
2x² - 5x - 3 = 0
Δ=25 + 24=49 , √Δ = 7
x1=(5-7)/4 = -2/4=-1/2 ∈D
x2=(5+7)/4 = 12/4=3 ∈D
ODP:
x=-1/2 U x=3
---------------------------------------------------------------------------------------
x+1 = (2-2x)/(x-1) D: x≠1
(x+1)/1 = (2-2x)/(x-1) <----------mnozymy na krzyz
(x+1)(x-1) = (2-2x)*1 <--------- z wzoru (a+b)(a-b)=a²-b²
x² -1 -2+2x = 0
x²+2x-3=0
Δ=4 + 12=16 , √Δ=4
x1=(-2-4)/2=-6/2=-3 ∈ D
x2=(-2+4)/2 = 2/2=1 ∉D (nie nalezy)
odp:
x=-3
-------------------------------------------------------------------------
wzory:
Δ=b²-4ac
gdy Δ>0, to x1=(-b-√Δ)/2a , x2=(-b+√Δ)/2a
Δ=0 , to x = -b/2a