" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2x² + 10x - 20 ≤ x² - x + 6x -6
x² + 5x - 14 ≤ 0 Δ = 25+56 = 81, √Δ=9, x1=-5-9/2 = -7, x2 = -5+9/2 = 2
parabolka ramionami do góry i m. zerowe -7 i 2 i masz x∈<-7, 2>
x⁵ - 100x³ = 0
x³(x² - 100) = 0
x³(x + 10)(x - 10) = 0
x = 0 lub x = -10 lub x = 10
x³ - 3x² - 10x + 24 = 0 jednym z pierwiastków jest x = 2, dzielimy więc przez dwumian (x - 2):
(x³ - 3x² - 10x + 24) : (x - 2) = x² - x - 12
-x³ +2x
= -x² -10x + 24
x² -2x
= -12x + 24
12x -24
= =
a więc (x - 2)(x² - x - 12) = 0 w drugim nawiasie trójmianik kwadratowy:
Δ = 1 + 48 = 49, √Δ = 7, x1 = 1-7/2 = -3, x2 = 1+7/2 = 4 a więc:
(x - 2)(x + 3)(x - 4) = 0
x = 2 lub x = -3 lub x = 4 GOTOWE!!!