Prosta y=x+4 przecina okrąg x² + y² =25 w punktach A i B. Oblicz cięciwę AB
y = x + 4
x² + y² = 25
x² + ( x + 4 )² = 25
x² + x² + 8x + 16 - 25 = 0
2x² + 8x - 9 = 0
Δ = b² - 4ac
Δ = 64 + 72 = 136
√Δ = 2√34
x₁= ( - 8 - 2√34) : 4 = - 2 - 1/2√34 y₁ = - 2 - 1/2√34 + 4 = 2 - 1/2√34
x₂ = - 2 + 1/2√34 y₂ = - 2 + 1/2√34 + 4 = 2 + 1/2√34
A = ( - 2 - 1/2√34; 2 - 1/2√34) B = ( - 2 + 1/2√34 ; 2 + 1/2√34 )
I ABI² = (x₂ - x₁ )² + (y₂ - y₁)²
IABI² =( - 2 + 1/2√34 + 2 + 1/2√34)² + ( 2 + 1/2√34 - 2 + 1/2√34)² = ( √34 )² + ( √34 )² = 34 + 34 = 68
IABI = √68 = 2√17
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
y = x + 4
x² + y² = 25
x² + ( x + 4 )² = 25
x² + x² + 8x + 16 - 25 = 0
2x² + 8x - 9 = 0
Δ = b² - 4ac
Δ = 64 + 72 = 136
√Δ = 2√34
x₁= ( - 8 - 2√34) : 4 = - 2 - 1/2√34 y₁ = - 2 - 1/2√34 + 4 = 2 - 1/2√34
x₂ = - 2 + 1/2√34 y₂ = - 2 + 1/2√34 + 4 = 2 + 1/2√34
A = ( - 2 - 1/2√34; 2 - 1/2√34) B = ( - 2 + 1/2√34 ; 2 + 1/2√34 )
I ABI² = (x₂ - x₁ )² + (y₂ - y₁)²
IABI² =( - 2 + 1/2√34 + 2 + 1/2√34)² + ( 2 + 1/2√34 - 2 + 1/2√34)² = ( √34 )² + ( √34 )² = 34 + 34 = 68
IABI = √68 = 2√17