" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x+4≤2 ∧ x+4≥-2
x≥-2 ∧ x≥-6
x∈<-6;-2>
-2x + |x-2| > 3
|x-2| > 3 - 2x
x-2 > 3 - 2x ∨ x-2 < 2x - 3
3x > 5 ∨ x > 1
x>5/3 ∨ x > 1
x∈(1;+nieskończoności)
|x-1| +1 >x
|x-1| > x - 1
x-1 > x -1 ∧ x-1 < 1 - x
sprzeczność 2x < 2
x < 1
x∈(- nieskończoności ; 1)
x < 2 |x|
x/2 < |x|
x > x/2 ∧ x < -x/2
2x > x ∧ 2x < -x
x >0 ∧ x<0
x∈R/{0}
x^2 + 3x -4 = 0
Δ=9+16
√Δ=5
x=(-3+5)/2 ∨ x= (-3-5)/2
x=1 ∨ x = -4
2x^2 - 3x +8 = 0
Δ= 9-64
Δ= -55
brak rozwiązań
3x^2 - 4x + 5 = 2x^2 + 10
x^2 - 4x - 5 = 0
Δ=16+20
√Δ=6
x = (4+6)/2 ∨ x=(4-6)/2
x=5 ∨ x=-1
x^2+4x+4=0
Δ=16 - 16
Δ=0
x=-4/2
x= -2
|x^2| + 1 = 2x^2
|x^2| = 2x^2 - 1
x^2 = 2x^2 - 1 ∨ x^2 = 1 - 2x^2
x^2 = 1 ∨ 3x^2 = 1
x=1 ∨ x=-1 ∨ x^2 = 1/3
x=1 ∨ x=-1 ∨ x=√3/3 ∨ x=√3/3