" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Samakan saja.
Dengan saling tinjau, diperoleh:
Koefisien x² ≡ a + 2 = b
Koefisien x ≡ 2b - 1 = 3b - 2
Konstanta ≡ -b = c - 6
Sehingga, pada koefisien x:
2b - 1 = 3b - 2
3b - 2b = -1 + 2
Didapat:
b = 1
Lalu, pada koefisien x²
a + 2 = b
a + 2 = 1
a = -1
Serta, pada konstanta:
-b = c - 6
-1 = c - 6
c = 5
Didapat:
a = -1, b = 1, c = 5 [D]
Nomor 2.
Coba jabarkan:
(x+3)(x-2)(x-t)
= (x² + x - 6)(x-t)
= x³ + x² - 6x - tx² - ax + 6t
= x³ + (1-t)x² - (t+6)x + 6t
Tinjau:
= x³ - 7x + 6
Tinjau misalkan konstanta, mendapatkan:
6t = 6
t = 1 [D]
Nomor 3.
- Tinjau koefisien x² [5 = a, artinya a = 5]
- Tinjau koefisien x [b + c = -2]
- Tinjau konstanta [7(b-c) = 3]
Dari eliminasi:
b + c = -2
b - c = 3/7 +
2b = -11/7
b = -11/14
Serta, untuk itu:
-11/14 + c = -2
c = -2 + 11/14
c = -17/14
Selesaikan:
a + 8b - 6c
= 5 + 8(-11/14) - 6(-17/14)
= 5 - 88/14 + 102/14
= 5 + 14/14
= 5 + 1
= 6 [D]