" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
y = y
x² = 4x - 3
x² - 4x + 3 = 0
(x - 3) (x - 1) = 0
x = 3 ✅ x = 1
V = π ₁∫³ {y₁² - y₂²} dx
V = π ₁∫³ {[x²]² - [4x - 3]²} dx
V = π ₁∫³ {x⁴ - [16x² - 24x + 9]} dx
V = π ₁∫³ {x⁴ - 16x² + 24x - 9} dx
V = π ₁|³ [x⁵/5 - 16x³/3 + 12x² - 9x]
V = π {[3⁵/5 - 16•3³/3 +12•3² - 9•3] - [1⁵/5 - 16•1³/3 + 12•1² - 9•1]}
V = π {[243/5 - 144 + 108 - 27] - [1/5 - 16/3 + 12 - 9]}
V = π {[-14,4] - [-2,13]}
V = π {[-14,4 + 2,13]}
V = π {[-12,27]}
V = 12,27π ✔