" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
F = [〖xy〗^2,〖yx〗^2 ] od A = (1,1) do B = (3,3)
- równanie parametryczne odcinka
W = ∫_L▒〖(〖xy〗^2+x^2 y)dl 〗
dl = √((dx/dt)^2+(dy/dt)^2 ) dt dl = √(4+4) dt dl = 2√2 dt
W = 2√2 ∫_0^1▒〖 [(1+2t)〖(3+2t)〗^(2 ) 〗+(3+2t)(1+2t)^(2 )] dt
W = 2√2 ∫_0^1▒〖 [(1+2t)(〖4t〗^2 〗+12t+9)+ (3+2t)(〖4t〗^2+12t+1)] dt
W = 8√2 ∫_0^1▒( 〖4t〗^3+〖13t〗^2+17t+3) dt
W = 8√2 〖[ t^4+〖13t〗^3/3+ 〖17t〗^2/2 + 3t]〗_0^1
W = 8√2(1+ 26/6+51/6+3)
W = 8√2 101/6
W = (404√2)/3