Oblicz wartości funkcji trygonometrycznych kątów < Alfa i Beta > , w trójkącie ABC
Trójkąt ACD jest prostokatny, zatem
I ACI^2 = 6^2 + 4^2 = 36 + 15 = 52 = 4*13
więc
I AC I = 2 p(13)
oraz
sin alfa = 4/ I AC I = 4/( 2 p(13)) = 2/ p(13) = [ 2 p(13)]/13
cos alfa = 6 / I AC I = 6 / ( 2 p(13)) = 3 / p(13) = [ 3 p(13) ]/13
tg alfa = 4/6 = 2/3
ctg alfa = 6/4 = 3/2 = 1,5
===========================
Trójkąt BCD jest prostokatny , zatem
I BD I^2 + 4^2 = 6^2
I BD I^2 = 36 - 16 = 20 = 4*5
I BD I = 2 p(5)
sin beta = 4/6 = 2/3
cos beta = I BD I / 6 = 2 p(5) / 6 = p(5) /3
tg beta = 4 / I BD I = 4/ ( 2 p(5)) = 2/ p(5) = [ 2 p(5)]/5
ctg beta = 2 p(5)/4 = p(5)/2
============================
p(5) - pierwiastek kwadratowy z 5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Trójkąt ACD jest prostokatny, zatem
I ACI^2 = 6^2 + 4^2 = 36 + 15 = 52 = 4*13
więc
I AC I = 2 p(13)
oraz
sin alfa = 4/ I AC I = 4/( 2 p(13)) = 2/ p(13) = [ 2 p(13)]/13
cos alfa = 6 / I AC I = 6 / ( 2 p(13)) = 3 / p(13) = [ 3 p(13) ]/13
tg alfa = 4/6 = 2/3
ctg alfa = 6/4 = 3/2 = 1,5
===========================
Trójkąt BCD jest prostokatny , zatem
I BD I^2 + 4^2 = 6^2
I BD I^2 = 36 - 16 = 20 = 4*5
więc
I BD I = 2 p(5)
oraz
sin beta = 4/6 = 2/3
cos beta = I BD I / 6 = 2 p(5) / 6 = p(5) /3
tg beta = 4 / I BD I = 4/ ( 2 p(5)) = 2/ p(5) = [ 2 p(5)]/5
ctg beta = 2 p(5)/4 = p(5)/2
============================
p(5) - pierwiastek kwadratowy z 5