oblicz postać iloczynowa wielomianu p(x)=(1+x)(2x-5)-(5-2x)(x-2)
p(x) = (1 +x)(2x -5) - (5 -2x)(x - 2) =
= 2x -5 +2x^2 - 5x - [5x - 10 -2x^2 + 4x] =
= 2x^2 -3x - 5 - 9x +10 + 2 x^2 =
= 4 x^2 - 12 x + 5
delta = (-12)^2 - 4*4*5 = 144 - 80 = 64
p64 = 8
x1 = [12 - 8]/8 = 4/8 = 0,5
x2 = [12 +8]/8 = 20/8 = 2,5
zatem
p(x) = 4*(x - 0,5)*9x - 2,5)
========================
korzystamy z wzoru :
ax^2 + bx + c = a*( x -x1)*(x - x2)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
p(x) = (1 +x)(2x -5) - (5 -2x)(x - 2) =
= 2x -5 +2x^2 - 5x - [5x - 10 -2x^2 + 4x] =
= 2x^2 -3x - 5 - 9x +10 + 2 x^2 =
= 4 x^2 - 12 x + 5
delta = (-12)^2 - 4*4*5 = 144 - 80 = 64
p64 = 8
x1 = [12 - 8]/8 = 4/8 = 0,5
x2 = [12 +8]/8 = 20/8 = 2,5
zatem
p(x) = 4*(x - 0,5)*9x - 2,5)
========================
korzystamy z wzoru :
ax^2 + bx + c = a*( x -x1)*(x - x2)