a) A =(8;-4), B = (4; 7), C = (1; 1) AB = [4 -8; 7-(4)] = [-4 ; 11] AC = [1 - 8; 1 -(-4)] = [-7; 5] I AB I² = (-4)² + 11² = 16 + 121 = 137 I AB I = √137 I AC I² = (-7)² + 5² = 49 +25 = 74 I AC I = √74 AB o AC = -4*(-7) + 11*5 = 28 +55 = 83 AB o AC = I AB |* I AC I α = [ AB o AC ] : ( I AB i *I AC I ) α = 83 : ( √137 *√74) sin²α = 1 - cos² α = 1 - 83²/(137*74) sin²α = 1 - 6889/10 138 = 3249/10 138 sinα = 57/√(10 138) Pole Δ ABC P = (1/2)*I AB I *I AC I * sin α = (1/2)*√137*√74*[57/√(10 138) = = (1/2)*57 = 28,5 b) A = (2; -2), B = (-2;3), C = (-10; 10) AB = [-2-2; 3- (-2)] = [-4; 5] AC = [-10 -2; 10 -(-2)] = [-12; 12] BC = [ -10 -(-2); 10 -3] = [-8; 7] długości: AB, AC, BC : I AB I² = (-4)² + 5² = 16 +25 = 41 I AC I² = (-12)² + 12² = 144 + 144 = 288 I BC I² = (-8)² + 7² = 64 + 49 = 113 I AB I = √41 I AC I = 12√2 AB i AC = (-4)*(-12) + 5*12 = 48 + 60 = 108 AB i AC = I AB I * I AC I 108 = √41*12√2* cos α α = 108 : 12√84 = 9/√84 sin² α = 1 - cos²α = 1 - (9/√84)² = 1 - 81/84 = 84/84 - 81/84 = = 3/84 sin α = √3/ √84 Pole Δ ABC P = (1/2)*I ABI * I AC I * sin α = (1/2)*√41*12√2*(√3/√84) = = 6*√246/√84 = 6*√(246/84) = 6*√(41/14) ≈ 10,3
a)
A =(8;-4), B = (4; 7), C = (1; 1)
AB = [4 -8; 7-(4)] = [-4 ; 11]
AC = [1 - 8; 1 -(-4)] = [-7; 5]
I AB I² = (-4)² + 11² = 16 + 121 = 137
I AB I = √137
I AC I² = (-7)² + 5² = 49 +25 = 74
I AC I = √74
AB o AC = -4*(-7) + 11*5 = 28 +55 = 83
AB o AC = I AB |* I AC I
α = [ AB o AC ] : ( I AB i *I AC I )
α = 83 : ( √137 *√74)
sin²α = 1 - cos² α = 1 - 83²/(137*74)
sin²α = 1 - 6889/10 138 = 3249/10 138
sinα = 57/√(10 138)
Pole Δ ABC
P = (1/2)*I AB I *I AC I * sin α = (1/2)*√137*√74*[57/√(10 138) =
= (1/2)*57 = 28,5
b)
A = (2; -2), B = (-2;3), C = (-10; 10)
AB = [-2-2; 3- (-2)] = [-4; 5]
AC = [-10 -2; 10 -(-2)] = [-12; 12]
BC = [ -10 -(-2); 10 -3] = [-8; 7]
długości: AB, AC, BC :
I AB I² = (-4)² + 5² = 16 +25 = 41
I AC I² = (-12)² + 12² = 144 + 144 = 288
I BC I² = (-8)² + 7² = 64 + 49 = 113
I AB I = √41
I AC I = 12√2
AB i AC = (-4)*(-12) + 5*12 = 48 + 60 = 108
AB i AC = I AB I * I AC I
108 = √41*12√2* cos α
α = 108 : 12√84 = 9/√84
sin² α = 1 - cos²α = 1 - (9/√84)² = 1 - 81/84 = 84/84 - 81/84 =
= 3/84
sin α = √3/ √84
Pole Δ ABC
P = (1/2)*I ABI * I AC I * sin α = (1/2)*√41*12√2*(√3/√84) =
= 6*√246/√84 = 6*√(246/84) = 6*√(41/14) ≈ 10,3