Pp=a²√3/4=[8²√3]/4=64√3/4=16√3 j² z pitagorasa (1/2a)²+hs²=b² 4²+hs²=6² hs²=36-16 hs=√20=2√3 to Pb=3·1/2ah=3·1/2·8·2√3=24√3 j² to pole calkowite bryly Pc=Pp+Pb=16√3+24√√3=40√3 j²
h=a√3/2=8√3/2=4√3 to 2/3h=2/3·4√3=(8√3)/3
z pitagorasa (8√3/3)²+H²=b² 192/9+H²=6² 21⅓+H²=36 H²=36-21⅓ H=√(14⅔)=√(44/3)=2√11/√3=(2√33)/3 objetosc ostroslupa wynosi : V=1/3Pp·H=1/3·16√3·(2√33)/3=(32√99)/9=(96√11)/9=(32√11)/3 j³
ostroslup prawidlowy trojkatny makraw,podstrawy
a=8
kraw,boczna b=6
wysokosc ostroslupa =H
wysokosc podstawy =h
wysokosc sciany bocznej =hs
V=?Pc=?
Pp=a²√3/4=[8²√3]/4=64√3/4=16√3 j²
z pitagorasa
(1/2a)²+hs²=b²
4²+hs²=6²
hs²=36-16
hs=√20=2√3
to Pb=3·1/2ah=3·1/2·8·2√3=24√3 j²
to pole calkowite bryly Pc=Pp+Pb=16√3+24√√3=40√3 j²
h=a√3/2=8√3/2=4√3 to 2/3h=2/3·4√3=(8√3)/3
z pitagorasa
(8√3/3)²+H²=b²
192/9+H²=6²
21⅓+H²=36
H²=36-21⅓
H=√(14⅔)=√(44/3)=2√11/√3=(2√33)/3
objetosc ostroslupa wynosi :
V=1/3Pp·H=1/3·16√3·(2√33)/3=(32√99)/9=(96√11)/9=(32√11)/3 j³