oblicz nierównosc 3x2 + 6x>0 (3x kwadrat)
3x(x+2)>0
x=0 lub x=-2
szkic paraboli o podanych pierwiastkach, ramiona paraboli w górę
x∈(-∞,-2)u(0,∞)
3x² + 6x>0
Δ = b² - 4ac = 6²= 36
√Δ = √36 = 6
x₁ =( -b-√Δ)/2a = (-6-6)6 = -12/6 = -2
x₂ =( -b+√Δ)/2a = (-6+6)6 = /6 = 0
wykres paraboli
a> 0 ramiona do góry
x € (-∞, -2) U ( 0, +∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3x(x+2)>0
x=0 lub x=-2
szkic paraboli o podanych pierwiastkach, ramiona paraboli w górę
x∈(-∞,-2)u(0,∞)
3x² + 6x>0
Δ = b² - 4ac = 6²= 36
√Δ = √36 = 6
x₁ =( -b-√Δ)/2a = (-6-6)6 = -12/6 = -2
x₂ =( -b+√Δ)/2a = (-6+6)6 = /6 = 0
wykres paraboli
a> 0 ramiona do góry
x € (-∞, -2) U ( 0, +∞)