o ciągu geometrycznym (an) wiemy, że a2=8 i a3=4. Oblicz a10 i S10.
a2=8
a3=4
q=a3/a2
q=4/8
q=1/2
a2=a1*q
8=a1*1/2/*2
16=a1
a1=16
a10=a1*q^(n-1); ^do potęgi
a10=16*(1/2)^9
a10=16*1/512
a10=1/32
1-q^n
S10=-a1*---------;
1-q
1-(1/1024)
S10=16*--------
1-1/2
S10=16*[(-1023)/1024]*2
S10=-1023/32
s10=-31 i31/32
a3=a2*q
4=8*q
a10=a2*8*q
a10=8*(1/2)do potęgi 8
a108/256=1/36
s10=16*(1-1/1024)/(1-1/2)=32736/1024=31,96875
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a2=8
a3=4
q=a3/a2
q=4/8
q=1/2
a2=a1*q
8=a1*1/2/*2
16=a1
a1=16
a10=a1*q^(n-1); ^do potęgi
a10=16*(1/2)^9
a10=16*1/512
a10=1/32
1-q^n
S10=-a1*---------;
1-q
1-(1/1024)
S10=16*--------
1-1/2
S10=16*[(-1023)/1024]*2
S10=-1023/32
s10=-31 i31/32
a3=a2*q
4=8*q
q=1/2
a10=a2*8*q
a10=8*(1/2)do potęgi 8
a108/256=1/36
a1=16
s10=16*(1-1/1024)/(1-1/2)=32736/1024=31,96875