pblicz granicę ciągu lim (2n+1) /2 - ( 1+3+5+...+2n-1) / (n+1)
1 + 3 + 5 + ... + 2n - 1 = 0,5*[ 1 + 2n - 1]*n = 0,5*2n*n = n^2
zaten
(2n + 1)/2 - n^2 /( n + 1) = [ (2n+1)*(n +1) -2 n^2]/[ 2*( n + 1)] =
= [ 2 n^2 + 2n + n + 1 - 2 n^2]/( 2n + 2) =( 3n + 1)/( 2n + 2)
lim [ (3n + 1)/(2n + 2)] =
n --> +oo
= lim [ ( 3 + 1/n) /( 2 + 2/n)] = 3/2
n --> + oo
bo 1/n --> 0 i 2/n --> 0, gdy n--> + oo
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1 + 3 + 5 + ... + 2n - 1 = 0,5*[ 1 + 2n - 1]*n = 0,5*2n*n = n^2
zaten
(2n + 1)/2 - n^2 /( n + 1) = [ (2n+1)*(n +1) -2 n^2]/[ 2*( n + 1)] =
= [ 2 n^2 + 2n + n + 1 - 2 n^2]/( 2n + 2) =( 3n + 1)/( 2n + 2)
lim [ (3n + 1)/(2n + 2)] =
n --> +oo
= lim [ ( 3 + 1/n) /( 2 + 2/n)] = 3/2
n --> + oo
bo 1/n --> 0 i 2/n --> 0, gdy n--> + oo