" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
pertanyaan:
tentukan x^4 + y^4
pengerjaan:
x² - 2xy + 2y² -4y + 4 = 0
x² - 2xy + (y² +y²) -4y + 4 = 0
(x² - 2xy + y²) + (y² -4y + 4) = 0
(x - y)² + (y - 2)² = 0
agar persamaan (x - y)² + (y - 2)² = 0, maka
(x - y)² = 0
x - y = 0
x = y
dan
(y - 2)² = 0
y - 2 = 0
y = 2
x = y = 2
x^4 + y^4 = 2^4 + 2^4
= 16 + 16
= 32
jadi x^4 + y^4 = 32