Matma !!!! ;((
Help ! ;)
Daję naj. ;)
Zadania w załączniku.
Zad.1
x²+6x+8 = 0
Δ = 36-32 = 4
√Δ = 2
x₁ = (-6-2)/2 = -4
x₂ = (-6+2)/2 = -2
-2 > -4
Odp. C) -2
zad.2
2x²+3x-7 = 0
Z wzoru Viete"a:
x₁+x₂ = -b/a = -3/7
Odp.C) -3/7
Zad.3
-3x²+3x+36 ≥ 0 /:3
-x²+x+12 ≥ 0
Δ = 1+48 = 49
√Δ = 7
x₁ = (-1-7)/(-2) = 4
x₂ = (-1+7)/(-2) = -3
a = -3 < 0, ramiona paraboli skierowane w dół
x ∈ <-3; 4>
Odp.A) x ∈ <-3: 4>
Zad.4
y = -2x²-4x-5
W=(p;q)
p = -b/2a = 4/(-4) = -1
q = f(-1) = -2*(-1)²-4(-1)-5 = -2+4-5 = -3
W=(-1; -3)
Odp. B) (-1;-3)
Zad.5
x²+y²-6x+8y-11 = 0
x²-6x+9-9+y²+8y+16-16-11 = 0
(x²-6x+9) + (y²+8y+16) -20-11 = 0
(x-3)² + (y+4)² = 36
(x-3)²+(y+4)² = 6²
S+(3;-4), r = 6
Odp. c)
zad.6
G(x) = 4x³+2x²-3x-4-(-x²+5x-6) = 4x³+2x²-3x-4+x²-5x+6 = 4x³+3x²-8x+2
G(x) = 4x³+3x²-8x+2
Odp. B) 4x³+3x²-18x+2
Zad.7
x³+2x²-9x-16 = 0
x²(x+2)-9(x+2) = 0
(x²-9)(x+2) = 0
(x+3)(x-3)(x+2) = 0
x = -3 v x = 3 v x = -2
Odp. B) -3; -2; 3
Zad.8
2x³-8x²+8x = 0 /:2
x³-4x²+4x = 0
x(x²-4x+4) = 0
x₁ = 0
lub
x²-4x+4 = 0
Δ = 16-16 = 0
x₂ = 4/2 = 2
Odp. C) x₁ = 0, x₂ = 2
Zad.9
W(x) = x³+5x²-9x-45 = x²(x+5)-9(x+5) = (x+5)(x²-9) = (x+5)(x-3)(x+3)
Odp. A) (x+5)(x-3)(x+3)
Zad.10
W(x) = x³+ax²+6x-4
W(2) = 0
2³+a*2²+6*2-4 = 0
8+4a+12-4 = 0
4a = -16 /:4
a = -4
Odp. D) -4
Zad.11
x²-4mx-m³+6m²+m-2 = 0, (x-x₁)² < 8(m+1)
Równanie ma dwa różne pierwiastki rzeczywiste, kiedy Δ > 0
Δ = 16m²-4(-m³+6m²+m-2) > 0
16m²+4m³-24m²-4m+8 > 0
4m³-8m²-4m+8 > 0 /:4
m³-2m²-m+2 > 0
m²(m-2)-(m-2) > 0
(m²-1)(m-2) > 0
(m+1)(m-1)(m-2) > 0
m ∈ (-1;1) u (2;+∞)
Ze wzoru Viete"a:
x₁+x₂ = 4m
x₁x₂ = -m³+6m²+m-2
Przekształcamy warunek z tresci zadania z zastosowaniem wzorów Viete"a:
(x₁-x₂)² < 8(m+1)
x₁²-2x₁x₂+x₂² < 8(m+1)
(x₁+x₂)²-4x₁x₂ < 8(m+1)
Podstawiamy ze wzorów Viete"a:
16m²-4(-m³+6m²+m-2) < 8(m+1)
16m²+4m³-24m²-4m+8 < 8m+8
4m³-8m²-4m+8 < 8m+8
4m³-8m²-12m < 0 /:4
m³-2m²-3m < 0
m(m²-2m-3) < 0
m²-2m-3 = 0
Δ = 4+12 = 16
√Δ = 4
m = (2-4)/2 = -1 v m = (2+4)/2 = 3
Mamy zatem nierówność:
m(m+1)(m-3) < 0
m ∈ (-∞;-1) u (0;3)
Uwzględniając warunek z Δ-tą:
m ∈ (0;1) u (2;3)
Odp. m ∈ (0;1) u (2;3)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Zad.1
x²+6x+8 = 0
Δ = 36-32 = 4
√Δ = 2
x₁ = (-6-2)/2 = -4
x₂ = (-6+2)/2 = -2
-2 > -4
Odp. C) -2
zad.2
2x²+3x-7 = 0
Z wzoru Viete"a:
x₁+x₂ = -b/a = -3/7
Odp.C) -3/7
Zad.3
-3x²+3x+36 ≥ 0 /:3
-x²+x+12 ≥ 0
Δ = 1+48 = 49
√Δ = 7
x₁ = (-1-7)/(-2) = 4
x₂ = (-1+7)/(-2) = -3
a = -3 < 0, ramiona paraboli skierowane w dół
x ∈ <-3; 4>
Odp.A) x ∈ <-3: 4>
Zad.4
y = -2x²-4x-5
W=(p;q)
p = -b/2a = 4/(-4) = -1
q = f(-1) = -2*(-1)²-4(-1)-5 = -2+4-5 = -3
W=(-1; -3)
Odp. B) (-1;-3)
Zad.5
x²+y²-6x+8y-11 = 0
x²-6x+9-9+y²+8y+16-16-11 = 0
(x²-6x+9) + (y²+8y+16) -20-11 = 0
(x-3)² + (y+4)² = 36
(x-3)²+(y+4)² = 6²
S+(3;-4), r = 6
Odp. c)
zad.6
G(x) = 4x³+2x²-3x-4-(-x²+5x-6) = 4x³+2x²-3x-4+x²-5x+6 = 4x³+3x²-8x+2
G(x) = 4x³+3x²-8x+2
Odp. B) 4x³+3x²-18x+2
Zad.7
x³+2x²-9x-16 = 0
x²(x+2)-9(x+2) = 0
(x²-9)(x+2) = 0
(x+3)(x-3)(x+2) = 0
x = -3 v x = 3 v x = -2
Odp. B) -3; -2; 3
Zad.8
2x³-8x²+8x = 0 /:2
x³-4x²+4x = 0
x(x²-4x+4) = 0
x₁ = 0
lub
x²-4x+4 = 0
Δ = 16-16 = 0
x₂ = 4/2 = 2
Odp. C) x₁ = 0, x₂ = 2
Zad.9
W(x) = x³+5x²-9x-45 = x²(x+5)-9(x+5) = (x+5)(x²-9) = (x+5)(x-3)(x+3)
Odp. A) (x+5)(x-3)(x+3)
Zad.10
W(x) = x³+ax²+6x-4
W(2) = 0
2³+a*2²+6*2-4 = 0
8+4a+12-4 = 0
4a = -16 /:4
a = -4
Odp. D) -4
Zad.11
x²-4mx-m³+6m²+m-2 = 0, (x-x₁)² < 8(m+1)
Równanie ma dwa różne pierwiastki rzeczywiste, kiedy Δ > 0
Δ = 16m²-4(-m³+6m²+m-2) > 0
16m²+4m³-24m²-4m+8 > 0
4m³-8m²-4m+8 > 0 /:4
m³-2m²-m+2 > 0
m²(m-2)-(m-2) > 0
(m²-1)(m-2) > 0
(m+1)(m-1)(m-2) > 0
m ∈ (-1;1) u (2;+∞)
Ze wzoru Viete"a:
x₁+x₂ = 4m
x₁x₂ = -m³+6m²+m-2
Przekształcamy warunek z tresci zadania z zastosowaniem wzorów Viete"a:
(x₁-x₂)² < 8(m+1)
x₁²-2x₁x₂+x₂² < 8(m+1)
(x₁+x₂)²-4x₁x₂ < 8(m+1)
Podstawiamy ze wzorów Viete"a:
16m²-4(-m³+6m²+m-2) < 8(m+1)
16m²+4m³-24m²-4m+8 < 8m+8
4m³-8m²-4m+8 < 8m+8
4m³-8m²-12m < 0 /:4
m³-2m²-3m < 0
m(m²-2m-3) < 0
m²-2m-3 = 0
Δ = 4+12 = 16
√Δ = 4
m = (2-4)/2 = -1 v m = (2+4)/2 = 3
Mamy zatem nierówność:
m(m²-2m-3) < 0
m(m+1)(m-3) < 0
m ∈ (-∞;-1) u (0;3)
Uwzględniając warunek z Δ-tą:
m ∈ (0;1) u (2;3)
Odp. m ∈ (0;1) u (2;3)