" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f'(x)=lim [f(x+h)-f(x)]/h=
h-->0
lim [(x+h)⁴-x⁴]/h=
h-->0
lim [((x+h)²-x²) ((x+h)²+x²) ]/h=
h-->0
lim [((x+h)-x)(x+h+x) ((x+h)²+x²) ]/h=
h-->0
lim [(h)(x+h+x) ((x+h)²+x²) ]/h=
h-->0
lim (x+h+x) ((x+h)²+x²) =2x*2x²=4x³
h-->0
[f(x+h) - f(x)]/h = [(x+h)⁴ - x⁴]/h = [4x³h +9x²h² +4xh³+h⁴]/h =
= 4x³ + 9x²h + 4xh² + h³
lim [ 4x³ + 9 x²h + 4xh² +h³] = 4x³
gdy h --> 0
zatem
f'(x) = 4x³