wyznacz pierwiastki wielomianow
Oblicz wartość wyrażenia.
log4 + log3 // log36-log3 - log₂8
a)
W(x) = x³ + 4x² - 2x - 8 = x²(x + 4) - 2(x + 4) = (x +4)(x² - 2) = (x + 4)(x - √2)(x + √2)
pierwiastki wielomianu to: -4 ; -√2 ; √2
b)
W(x) = x² + x - 2
Δ = 1 - 4 * 1 * (-2) = 1 + 8 = 9
√Δ = 9
x1 = (-1 - 9)/2 = -10/2 = -5
x2 = (-1 + 9)/2 = 8/2 = 4
pierwiastki wielomianu to: -5 ; 4
log4 + log3 // log36-log3 - log₂8 = log (4 * 3) / log (36 : 3) - log2 2³ =
log 12 / log 12 - 3log2 2 = 1 - 3 * 1 = 1 - 3 = -2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
W(x) = x³ + 4x² - 2x - 8 = x²(x + 4) - 2(x + 4) = (x +4)(x² - 2) = (x + 4)(x - √2)(x + √2)
pierwiastki wielomianu to: -4 ; -√2 ; √2
b)
W(x) = x² + x - 2
Δ = 1 - 4 * 1 * (-2) = 1 + 8 = 9
√Δ = 9
x1 = (-1 - 9)/2 = -10/2 = -5
x2 = (-1 + 9)/2 = 8/2 = 4
pierwiastki wielomianu to: -5 ; 4
log4 + log3 // log36-log3 - log₂8 = log (4 * 3) / log (36 : 3) - log2 2³ =
log 12 / log 12 - 3log2 2 = 1 - 3 * 1 = 1 - 3 = -2