Korzystając z własności proporcji, rozwiąż równanie:
a
b
c
a)
1/3x = (2x-3)/2x Z: x ≠ 0
D = R \ {0}
3x(2x-3) = 2x
6x²-9x = 2x
6x²-9x-2x = 0
6x²-11x = 0
x(6x-11) = 0
x = 0 ∉ D
6x-11 = 0
6x = 11 /:6
x = 11/6
x = 1⅚
Odp. x = 1⅚
b)
(4x-3)/(2x-3) = (5x-3)/(x+1)
Z: x+1 ≠ 0
x ≠ -1
2x-3 ≠ 0
x ≠ 1½
D = R \ {-1;1½}
(2x-3)(5x-3) = (4x-3)(x+1)
10x²-6x-15x+9 = 4x²+4x-3x-3
10x²-21x+9 = 4x²+x-3
10x²-4x²-21x-x+9+3 = 0
6x²-22x+12 = 0 /:2
3x²-11x+6 = 0
Δ = 121-72 = 49
√Δ = √49 = 7
x1 = (11-7)/6 = 2/3
x2 = (11+7)/6 = 3
Odp. x = 2/3 v x = 3
c)
(x-6)/(x-5) = (2x-11)/(x-1)
Z: x-1 ≠ 0
x ≠ 1
x-5 ≠ 0
x ≠ 5
D = R \ {1;5}
(x-5)(2x-11) = (x-1)(x-6)
2x²-11x-10x+55 = x²-6x-x+6
2x²-21x+55 = x²-7x+6
2x²-x²-21x+7x+55-6 = 0
x²-14x+49 = 0
Δ = 196-196 = 0
x = 14/2 = 7
Odp. x = 7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
1/3x = (2x-3)/2x Z: x ≠ 0
D = R \ {0}
3x(2x-3) = 2x
6x²-9x = 2x
6x²-9x-2x = 0
6x²-11x = 0
x(6x-11) = 0
x = 0 ∉ D
6x-11 = 0
6x = 11 /:6
x = 11/6
x = 1⅚
Odp. x = 1⅚
b)
(4x-3)/(2x-3) = (5x-3)/(x+1)
Z: x+1 ≠ 0
x ≠ -1
2x-3 ≠ 0
x ≠ 1½
D = R \ {-1;1½}
(2x-3)(5x-3) = (4x-3)(x+1)
10x²-6x-15x+9 = 4x²+4x-3x-3
10x²-21x+9 = 4x²+x-3
10x²-4x²-21x-x+9+3 = 0
6x²-22x+12 = 0 /:2
3x²-11x+6 = 0
Δ = 121-72 = 49
√Δ = √49 = 7
x1 = (11-7)/6 = 2/3
x2 = (11+7)/6 = 3
Odp. x = 2/3 v x = 3
c)
(x-6)/(x-5) = (2x-11)/(x-1)
Z: x-1 ≠ 0
x ≠ 1
x-5 ≠ 0
x ≠ 5
D = R \ {1;5}
(x-5)(2x-11) = (x-1)(x-6)
2x²-11x-10x+55 = x²-6x-x+6
2x²-21x+55 = x²-7x+6
2x²-x²-21x+7x+55-6 = 0
x²-14x+49 = 0
Δ = 196-196 = 0
x = 14/2 = 7
Odp. x = 7