No. 1 aja ya Bintang...
tan (2x + 45°) = y/x = a/1
r = √(x² + y²) = √(1 + a²)
sin (2x + 45°) = y/r = a/√(1 + a²)
cos (2x + 45°) = x/r = 1/√(1 + a²)
dg cara yg sama
tan (x + 30°) = y/x = b/1
sin (x + 30°) = b/√(1 + b²)
cos (x + 30°) = 1/√(1 + b²)
••
tan (3x + 75°) tan (x + 15°)
= 2 sin (3x + 75°) sin (x + 15°) / 2 cos (3x + 75°) cos (x + 15°)
= (cos (3x + 75 - (x + 15)) - cos (3x + 75 + x + 15)) / (cos (3x + 75 + x + 15) + cos (3x + 75 - (x + 15))
= (cos (2x + 60°) - cos (4x + 90°)) / (cos (4x + 90°) + cos (2x + 60°))
= ...
•••••
cos (2x + 60°)
= cos 2(x + 30°)
= cos² (x + 30°) - sin² (x + 30°)
= (1 - b²) / (1 + b²)
cos (4x + 90°)
= cos 2(2x + 45°)
= (1 - a²) / (1 + a²)
cos (2x + 60°) - cos (4x + 90°)
= (1 - b²)/(1 + b²) - (1 - a²)/(1 + a²)
= ((1 + a²)(1 - b²) - (1 - a²)(1 + b²)) / (1 + a²)(1 + b²)
cos (2x + 60°) + cos (4x + 90°)
= ((1 + a²)(1 - b²) + (1 - a²)(1 + b²)) / (1 + a²)(1 + b²)
Lanjutan
= ((1 + a²)(1 - b²) - (1 - a²)(1 + b²)) /
((1 + a²)(1 - b²) + (1 - a²)(1 + b²))
= (1 + a² - b² - a²b² - (1 - a² + b² - a²b²) / (1 + a² - b² - a²b² + (1 - a² + b² - a²b²)
= (2(a² - b²)) / (2(1 - a²b²))
= (a² - b²) / (1 - a²b²)
#fokus ya...
Jawab:
Persamaan Trigonometri
Penjelasan dengan langkah-langkah:
untuk no. 1 , 2 dan 3
lihat lampiran
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
No. 1 aja ya Bintang...
tan (2x + 45°) = y/x = a/1
r = √(x² + y²) = √(1 + a²)
sin (2x + 45°) = y/r = a/√(1 + a²)
cos (2x + 45°) = x/r = 1/√(1 + a²)
dg cara yg sama
tan (x + 30°) = y/x = b/1
sin (x + 30°) = b/√(1 + b²)
cos (x + 30°) = 1/√(1 + b²)
••
tan (3x + 75°) tan (x + 15°)
= 2 sin (3x + 75°) sin (x + 15°) / 2 cos (3x + 75°) cos (x + 15°)
= (cos (3x + 75 - (x + 15)) - cos (3x + 75 + x + 15)) / (cos (3x + 75 + x + 15) + cos (3x + 75 - (x + 15))
= (cos (2x + 60°) - cos (4x + 90°)) / (cos (4x + 90°) + cos (2x + 60°))
= ...
•••••
cos (2x + 60°)
= cos 2(x + 30°)
= cos² (x + 30°) - sin² (x + 30°)
= (1 - b²) / (1 + b²)
cos (4x + 90°)
= cos 2(2x + 45°)
= (1 - a²) / (1 + a²)
cos (2x + 60°) - cos (4x + 90°)
= (1 - b²)/(1 + b²) - (1 - a²)/(1 + a²)
= ((1 + a²)(1 - b²) - (1 - a²)(1 + b²)) / (1 + a²)(1 + b²)
cos (2x + 60°) + cos (4x + 90°)
= ((1 + a²)(1 - b²) + (1 - a²)(1 + b²)) / (1 + a²)(1 + b²)
•••••
Lanjutan
= ...
= ((1 + a²)(1 - b²) - (1 - a²)(1 + b²)) /
((1 + a²)(1 - b²) + (1 - a²)(1 + b²))
= (1 + a² - b² - a²b² - (1 - a² + b² - a²b²) / (1 + a² - b² - a²b² + (1 - a² + b² - a²b²)
= (2(a² - b²)) / (2(1 - a²b²))
= (a² - b²) / (1 - a²b²)
#fokus ya...
Jawab:
Persamaan Trigonometri
Penjelasan dengan langkah-langkah:
untuk no. 1 , 2 dan 3
lihat lampiran