Misal :
Pusat = (p,q)
Jarak P ke garis = jari2 (r)
2y - x - 3 = 0 → garis 1
y + 2x - 4 = 0 → garis 2
r1 = r2
| (2p - 1q - 3)/√(2² + (-1)²) | = | (1p + 2q - 4)/√(1² + 2²) |
2p - q - 3 = p + 2q - 4
p - 3q = -1 ... (1)
subs ke y + x - 1 = 0
p + q = 1 ... (2)
elisusi (1) dan (2)
p = 1/2
q = 1/2
r = |(2p - q - 3)/√5|
r = 5/(2√5)
r² = 5/4
Perslingk dg P(1/2 , 1/2) dan r² = 5/4
(x - 1/2)² + (y - 1/2)² = 5/4
x² + y² - x - y - 3/4 = 0
4x² + 4y² - 4x - 4y - 3 = 0
##
gambar hanya pembuktian aja, kl jawaban sudah benar atau TIDAK NGASAL
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Misal :
Pusat = (p,q)
Jarak P ke garis = jari2 (r)
2y - x - 3 = 0 → garis 1
y + 2x - 4 = 0 → garis 2
r1 = r2
| (2p - 1q - 3)/√(2² + (-1)²) | = | (1p + 2q - 4)/√(1² + 2²) |
2p - q - 3 = p + 2q - 4
p - 3q = -1 ... (1)
subs ke y + x - 1 = 0
p + q = 1 ... (2)
elisusi (1) dan (2)
p = 1/2
q = 1/2
r = |(2p - q - 3)/√5|
r = 5/(2√5)
r² = 5/4
Perslingk dg P(1/2 , 1/2) dan r² = 5/4
(x - 1/2)² + (y - 1/2)² = 5/4
x² + y² - x - y - 3/4 = 0
4x² + 4y² - 4x - 4y - 3 = 0
##
gambar hanya pembuktian aja, kl jawaban sudah benar atau TIDAK NGASAL