Jawab:
turunan
fungsi naik , y' > 0
y = u/v --> y' = (u' v - u v' ) / (v²)
Penjelasan dengan langkah-langkah:
f(x) = (x² + 3) / ( x- 1)
f' (x) = [(2x )(x - 1) - (x² + 3)] / ( x - 1)²
f '(x) = [ 2x² - 2x - x² - 3 ] / [ x - 1 ]²
f '(x) = [ x² -2x - 3 ] / [ x - 1 ] ²
f naik jika f '(x ) > 0
[ x² -2x - 3 ] / [ x - 1 ] ² > 0
i) nilai ( x - 1)² selalu > 0 untuk setiap x
ii) agar [ x² -2x - 3 ] / [ x - 1 ] ² > 0
maka [ x² -2x - 3 ] > 0
(x + 1)(x - 3 ) > 0
x < - 1 atau x > 3
(B)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
turunan
fungsi naik , y' > 0
y = u/v --> y' = (u' v - u v' ) / (v²)
Penjelasan dengan langkah-langkah:
f(x) = (x² + 3) / ( x- 1)
f' (x) = [(2x )(x - 1) - (x² + 3)] / ( x - 1)²
f '(x) = [ 2x² - 2x - x² - 3 ] / [ x - 1 ]²
f '(x) = [ x² -2x - 3 ] / [ x - 1 ] ²
f naik jika f '(x ) > 0
[ x² -2x - 3 ] / [ x - 1 ] ² > 0
i) nilai ( x - 1)² selalu > 0 untuk setiap x
ii) agar [ x² -2x - 3 ] / [ x - 1 ] ² > 0
maka [ x² -2x - 3 ] > 0
(x + 1)(x - 3 ) > 0
x < - 1 atau x > 3
(B)