xy' - y = xe^{y/x}
xy' =x e^{y/x} +y
y' = e^{y/x} +y/x
dy= (e^{y/x} +y/x)dx
misal
y=vx
dy=vdx+xdv
vdx+xdv= (e^v+v)dx
xdv- e^vdx=0
e^-vdv- 1/xdx=0
-e^-v-lnx=c
-e^(-y/x)-lnx=c
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
xy' - y = xe^{y/x}
xy' =x e^{y/x} +y
y' = e^{y/x} +y/x
dy= (e^{y/x} +y/x)dx
misal
y=vx
dy=vdx+xdv
vdx+xdv= (e^v+v)dx
xdv- e^vdx=0
e^-vdv- 1/xdx=0
-e^-v-lnx=c
-e^(-y/x)-lnx=c