Elo. Mam parę zadań z matmy zrobionych lecz chce zobaczyć czy takie same wyniki i wam wyjdą;p
Aktualnie temat to: Potęga o wykładniku wymiernym.
Ćw.3
Oblicz.
Ćw.4
Zapisz liczbę w postaci jednej potęgi o wykładniku wymiernym.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Ćw. 3.
a)
b)
c)![[(\frac{16}{49})^{-\frac{3}{2}}\cdot(\frac{7}{4})^{\frac{2}{5}}\cdot(\frac{4}{7})^{-\frac{3}{5}}]^{\frac{1}{4}}= [(\frac{16}{49})^{-\frac{3}{2}}\cdot(\frac{7}{4})^{\frac{2}{5}}\cdot(\frac{4}{7})^{-\frac{3}{5}}]^{\frac{1}{4}}=](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B16%7D%7B49%7D%29%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7D%5Ccdot%28%5Cfrac%7B7%7D%7B4%7D%29%5E%7B%5Cfrac%7B2%7D%7B5%7D%7D%5Ccdot%28%5Cfrac%7B4%7D%7B7%7D%29%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D)
![[(\frac{7}{4}^{2})^{\frac{3}{2}}\cdot(\frac{7}{4})^{\frac{2}{5}}\cdot(\frac{7}{4})^{\frac{3}{5}}]^{\frac{1}{4}}=[(\frac{7}{4})^{3+\frac{2}{5}+\frac{3}{5}}]^{\frac{1}{4}}=\frac{7}{4} [(\frac{7}{4}^{2})^{\frac{3}{2}}\cdot(\frac{7}{4})^{\frac{2}{5}}\cdot(\frac{7}{4})^{\frac{3}{5}}]^{\frac{1}{4}}=[(\frac{7}{4})^{3+\frac{2}{5}+\frac{3}{5}}]^{\frac{1}{4}}=\frac{7}{4}](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B7%7D%7B4%7D%5E%7B2%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Ccdot%28%5Cfrac%7B7%7D%7B4%7D%29%5E%7B%5Cfrac%7B2%7D%7B5%7D%7D%5Ccdot%28%5Cfrac%7B7%7D%7B4%7D%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D%5B%28%5Cfrac%7B7%7D%7B4%7D%29%5E%7B3%2B%5Cfrac%7B2%7D%7B5%7D%2B%5Cfrac%7B3%7D%7B5%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D%5Cfrac%7B7%7D%7B4%7D)
d)
Ćw. 4.
a)
b)![4\sqrt{2\cdot \sqrt[3]{2}}=2^{2}\cdot(2\cdot2^{\frac{1}{3}})^{\frac{1}{2}}=2^{2}\cdot(2^{\frac{4}{3}})^{\frac{1}{2}}=2^{2}\cdot2^{\frac{2}{3}}=2^{\frac{8}{3}} 4\sqrt{2\cdot \sqrt[3]{2}}=2^{2}\cdot(2\cdot2^{\frac{1}{3}})^{\frac{1}{2}}=2^{2}\cdot(2^{\frac{4}{3}})^{\frac{1}{2}}=2^{2}\cdot2^{\frac{2}{3}}=2^{\frac{8}{3}}](https://tex.z-dn.net/?f=4%5Csqrt%7B2%5Ccdot+%5Csqrt%5B3%5D%7B2%7D%7D%3D2%5E%7B2%7D%5Ccdot%282%5Ccdot2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D2%5E%7B2%7D%5Ccdot%282%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D2%5E%7B2%7D%5Ccdot2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3D2%5E%7B%5Cfrac%7B8%7D%7B3%7D%7D)
c)![\sqrt[4]{\sqrt[3]{3}}*\sqrt{3\sqrt{3}}=((3)^{\frac{1}{3}})^{\frac{1}{4}}\cdot(3\cdot3^{\frac{1}{2}})^{\frac{1}{2}}=3^{\frac{1}{7}}\cdot(3^{\frac{3}{2}})^{\frac{1}{2}}=3^{\frac{1}{7}+\frac{3}{4}}= \sqrt[4]{\sqrt[3]{3}}*\sqrt{3\sqrt{3}}=((3)^{\frac{1}{3}})^{\frac{1}{4}}\cdot(3\cdot3^{\frac{1}{2}})^{\frac{1}{2}}=3^{\frac{1}{7}}\cdot(3^{\frac{3}{2}})^{\frac{1}{2}}=3^{\frac{1}{7}+\frac{3}{4}}=](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Csqrt%5B3%5D%7B3%7D%7D%2A%5Csqrt%7B3%5Csqrt%7B3%7D%7D%3D%28%283%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5Ccdot%283%5Ccdot3%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D3%5E%7B%5Cfrac%7B1%7D%7B7%7D%7D%5Ccdot%283%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D3%5E%7B%5Cfrac%7B1%7D%7B7%7D%2B%5Cfrac%7B3%7D%7B4%7D%7D%3D)

d)![36*\sqrt[6]{6\sqrt{6}}=6^{2}\cdot(6\cdot6^{\frac{1}{2}})^{\frac{1}{6}}=6^{2}\cdot(6^{\frac{3}{2}})^{\frac{1}{6}}=6^{2}\cdot6^{\frac{1}{4}}=6^{\frac{9}{4}} 36*\sqrt[6]{6\sqrt{6}}=6^{2}\cdot(6\cdot6^{\frac{1}{2}})^{\frac{1}{6}}=6^{2}\cdot(6^{\frac{3}{2}})^{\frac{1}{6}}=6^{2}\cdot6^{\frac{1}{4}}=6^{\frac{9}{4}}](https://tex.z-dn.net/?f=36%2A%5Csqrt%5B6%5D%7B6%5Csqrt%7B6%7D%7D%3D6%5E%7B2%7D%5Ccdot%286%5Ccdot6%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D%3D6%5E%7B2%7D%5Ccdot%286%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D%3D6%5E%7B2%7D%5Ccdot6%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D6%5E%7B%5Cfrac%7B9%7D%7B4%7D%7D)