Dla jakich wartości parametru m suma kwadratów pierwiastków równania jest równa 7 ?
x^2 - 2m x - 3 = 0
(x1)^2 + ( x2)^2 = ( x1 + x2)^2 - 2 x1*x2 = ( - b/a)^2 - 2*( c/a) = ( 2m)^2 - 2*( -3) =
= 4 m^2 + 6 = 7
4 m^2 = 1
m^2 = 1/4
m = - 1/2 lub m = 1/2
=======================
Warunki:
1) a ≥ 0
2) Δ ≥ 0
3) x1^2 + x2^2 = 7
1) a = 1 > 0 spełniony
2) Δ = (-2m)^2 - 4 * 1 * (-3) = 4m^2 + 12
Δ ≥ 0 ⇔ 4m^2 + 12 ≥ 0
4m^2 ≥ - 12 /:4
m^2 ≥ -3 stąd m∈ R
3)x1^2 + x2^2 = x1^2 + 2x1x2 + x2 - 2x1x2 = (x1 + x2)^2 - 2x1x2 = (-b/a)^2 - 2*c/a =
(2m/1)^2 - 2*(-3)/1 = 4m^2 + 6
4m^2 + 6 = 7
4m^2 = 7 - 6
4m^2 = 1 /:4
m = 1/2 ∨ m = - 1/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^2 - 2m x - 3 = 0
(x1)^2 + ( x2)^2 = ( x1 + x2)^2 - 2 x1*x2 = ( - b/a)^2 - 2*( c/a) = ( 2m)^2 - 2*( -3) =
= 4 m^2 + 6 = 7
4 m^2 = 1
m^2 = 1/4
m = - 1/2 lub m = 1/2
=======================
Warunki:
1) a ≥ 0
2) Δ ≥ 0
3) x1^2 + x2^2 = 7
1) a = 1 > 0 spełniony
2) Δ = (-2m)^2 - 4 * 1 * (-3) = 4m^2 + 12
Δ ≥ 0 ⇔ 4m^2 + 12 ≥ 0
4m^2 ≥ - 12 /:4
m^2 ≥ -3 stąd m∈ R
3)x1^2 + x2^2 = x1^2 + 2x1x2 + x2 - 2x1x2 = (x1 + x2)^2 - 2x1x2 = (-b/a)^2 - 2*c/a =
(2m/1)^2 - 2*(-3)/1 = 4m^2 + 6
4m^2 + 6 = 7
4m^2 = 7 - 6
4m^2 = 1 /:4
m^2 = 1/4
m = 1/2 ∨ m = - 1/2