Dany jest wielomian W(x)=x3+(4b+a)x2-(3b-a)x-2.
Wyznacz wartosci a i b tak aby W(1)=0 i W(2)=28
W(x)=x³+(4b+a)x²-(3b-a)x-2
W(1)=0
W(2)=28
Układ równań:
0=1³+(4b+a)*1²-(3b-a)*1-2
28=2³+(4b+a)*2²-(3b-a)*2-2
0=1+(4b+a)*1-(3b-a)-2
28=8+(4b+a)*4-(6b-2a)-2
0=1+4b+a-3b+a-2
28=8+16b+4a-6b+2a-2
-4b+3b-a-a=1-2
-16b+6b-4a-2a=-28+8-2
-b-2a=-1
-10b-6a=-22 /:2
b=-2a+1
-5b-3a=-11
-5(-2a+1)-3a=-11
10a-5-3a=-11
7a=-6 /:7
a=-6/7
b=12/7+1
b=2i5/7
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
W(x)=x³+(4b+a)x²-(3b-a)x-2
W(1)=0
W(2)=28
Układ równań:
0=1³+(4b+a)*1²-(3b-a)*1-2
28=2³+(4b+a)*2²-(3b-a)*2-2
0=1+(4b+a)*1-(3b-a)-2
28=8+(4b+a)*4-(6b-2a)-2
0=1+4b+a-3b+a-2
28=8+16b+4a-6b+2a-2
-4b+3b-a-a=1-2
-16b+6b-4a-2a=-28+8-2
-b-2a=-1
-10b-6a=-22 /:2
b=-2a+1
-5b-3a=-11
b=-2a+1
-5(-2a+1)-3a=-11
b=-2a+1
10a-5-3a=-11
b=-2a+1
7a=-6 /:7
a=-6/7
b=12/7+1
a=-6/7
b=2i5/7