Udowodnij tożsamość:
a) (sin alfa + cos alfa)^2=1+2 sin alfa cos alfa
b) (1+ sin alfa) (1-sin alfa)=cos alfa*ctg alfa*sin alfa
c)cos alfa/sin alfa - sin alfa/cos alfa= (ctg alfa - 1) (tg alfa +1)
d)sin^4 alfa - cos^4alfa=sin^2alfa - cos^2 alfa
Proszę o szybkie rozwiązanie. Za poprawna i szybka odpowiedź dam naj.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)(sin alfa + cos alfa)^2=1+2 sin alfa cos alfa
L=sin^2+2sin*cos+cos^2=1+2sin*cos=P
b)(1+ sin alfa) (1-sin alfa)=cos alfa*ctg alfa*sin alfa
L=1-sin^2=cos^2
P=cos*sin*cos/sin=cos^2
L=P
c)cos alfa/sin alfa - sin alfa/cos alfa= (ctg alfa - 1) (tg alfa +1)
L=ctg-tg
P=ctg*tg+ctg-tg-1=1+ctg-tg-1=ctg-tg
L=P
d)sin^4 alfa - cos^4alfa=sin^2alfa - cos^2 alfa
L=(sin^2+cos^2)(sin^2-cos^2)=1*(sin^2-cos^2)=sin^2-cos^2=P
Wszedzie dopisz alfa
a)
(sinα+cosα)²=1+2sinα*cosα
sin²α+2sinα*cosα+cos²α=1+2sinα*cosα
(sin²α+cos²α)+2sinα*cosα=1+2sinα*cosα
1+2sinα*cosα=1+2sinα*cosα
b)
(1+sinα)(1-sinα)=cosα*ctgα*sinα
1²-sin²α=cosα*(cosα/sinα)*sinα
cos²α=cos²α
c)
cosα/sinα-sinα/cosα=(ctgα-1)(tgα+1)
ctgα-tgα=ctgα*tgα+ctgα-tgα-1
ctgα-tgα=1+ctgα-tgα-1
ctgα-tgα=ctgα-tgα
d)
sin^4α-cos^4α=sin²α-cos²α
(sin²α+cos²α)(sin²α-cos²α)=sin²α-cos²α
1(sin²α-cos²α)=sin²α-cos²α sin²α-cos²α=sin²α-cos²α