Jawab:
Penjelasan dengan langkah-langkah:
f(x) = 3x² . √(4x³)
f(x) = 3x² . √(4x² . x)
f(x) = 3x² . 2x . √x
f(x) = 6x³ √x
f(x) = 6x³ . x^(1/2)
f'(x) = (3 . 6x³⁻¹ √x) + (6x³ . 1/2 . x^(1/2 - 1))
f'(x) = (18x² √x) + (3x³ . x^(-1/2))
f'(x) = (18x³ √x) + (3x³/√x . (√x/√x))
f'(x) = (18x³ √x) + (3x³ . 1/x . √x)
f'(x) = (18x³ √x) + (3x² √x)
f'(x) = 3x² √x . (6x + 1)
Kode kategorisasi : 11.2.8
Kelas 11
Pelajaran 2 - Matematika
Bab 8 - Turunan
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
f(x) = 3x² . √(4x³)
f(x) = 3x² . √(4x² . x)
f(x) = 3x² . 2x . √x
f(x) = 6x³ √x
f(x) = 6x³ . x^(1/2)
f'(x) = (3 . 6x³⁻¹ √x) + (6x³ . 1/2 . x^(1/2 - 1))
f'(x) = (18x² √x) + (3x³ . x^(-1/2))
f'(x) = (18x³ √x) + (3x³/√x . (√x/√x))
f'(x) = (18x³ √x) + (3x³ . 1/x . √x)
f'(x) = (18x³ √x) + (3x² √x)
f'(x) = 3x² √x . (6x + 1)
Kode kategorisasi : 11.2.8
Kelas 11
Pelajaran 2 - Matematika
Bab 8 - Turunan