Andrzej, Bogdan i Celina przed rokiem mieli w sumie 40 lat. Jeśli dziś do połowy lat Andrzeja dodamy trzecią część lat Bogdana i czwartą część Celiny, to otrzymamy ilość lat Bogdana. Jeśli obecnie policzymy średnia arytmetyczną lat Andrzeja i Celiny, to otrzymamy ilość lat Bogdana sprzed roku. Ile lat ma każde z nich obecnie?
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ad. 2
x- wiek Andrzeja
y - wiek Bogdana
z- wiek Celiny
x+y+z-3=40 wiek z przed roku
(1/2)x+(1/3)y+(1/4)z=y /*12
(x+z)/2=y-1 /*2
z=43-x-y
6x-8y+3z=0
x+z=2y-2
z=53-x-y
6x-8y+3z=0
x=2y-2-z
z=43-x-y
x=2y-2-x
z=43-x-y
z=2y-2-x /*(-1)
z=43-x-y
-z=-2y+2+x
+___________
0=45-3y
3y=45 /:3
y=15
6x-8y+3z=0
x=2y-2-z /*(-3)
3x=6y-6-3z
-6x=-8y+3z
+______________
-3x=-2y-6
-3x=-2*15-6
-3x=-36 /:(-3)
x=12
x+y+z=43
12+15+z=43
z=43-12-15
z=16
x=12 - Andrzej
z=16 Bogdan
y=15 Celina
ZNACZENIA
x- wiek Andrzeja
y - wiek Bogdana
z - wiek Celiny
x+y+z-3=40 wiek Andrzeja, Bogdana oraz Celiny z przed roku
(1/2)x+(1/3)y+(1/4)z=y /*12
(x+z)/2=y-1 /*2
z=43-x-y
6x-8y+3z=0
x+z=2y-2
z=53-x-y
6x-8y+3z=0
x=2y-2-z
z=43-x-y
x=2y-2-x
z=43-x-y
z=2y-2-x /*(-1)
z=43-x-y
-z=-2y+2+x
+___________
0=45-3y
3y=45 /:3
y=15
6x-8y+3z=0
x=2y-2-z /*(-3)
3x=6y-6-3z
-6x=-8y+3z
+______________
-3x=-2y-6
-3x=-2*15-6
-3x=-36 /:(-3)
x=12
x+y+z=43
12+15+z=43
z=43-12-15
z=16
x=12 - Andrzej
z=16 Bogdan
y=15 Celina
Odpowiedzi:
Andrzej ma 12lat, Bogdan ma 16lat a Celina ma 15 lat.