1.udowodnij nierownosc:a) a/3+3/a>(wieksze badz rowne)2 gdy a>o b)a/b+b/a>(badz rowne)2,gdy a,b>o c)a^2/2b+4b^2/a>(badz rowne)a+2b,gdy a,b >0 d)a^3+b^3>(badz rowne)a^2b+ab^2gdy a,b>0 e)(a+b)(1/a+1/b)>(badz rowne)4 f)a^3+b^3>(badz rowme)1/4(a+b)^3,gdy a,b>0 g)a^2/a^4+1(badz rowne)a^3b+ab^3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) a/3 + 3/a >= 2*pierwiastek z ( a/3 * 3/a ) = 2 sr.art. >= sr. geom
b) a/b + b/a >= 2* pierwiastek z ( a/b * b/a ) = 2 * pierwiastek z 1 = 2 ( ten sam zwiazek miedzy srednimi )
f) a^3 + b^3 >= 1/4(a+b)^3 /4
4a^3 + 4b^3 >= a^3 + 3ab(a+b) + b^3
3(a^3 + b^3) = 3(a+b)(a^2 - ab + b^2 ) >= 3(a+b)ab / 3ab
(a^2 - ab + b^2 ) >/ ab
a^2 + b^2 >= 2ab
! ( bo (a-b)^2 >= 0 kwadrat liczby jest zawsze nieujemny ,stad mamy a^2 - 2ab + b^2 >= 0 ]> a^2 + b^2 >= 2ab ) podstawiamy
(2ab -ab)>= ab
ab>= ab
e) (a+b)(1/a + 1/b ) >= 4
1 + a/b + b/a + 1 >= 4
a/b + b/a >= 2
a/b + b/a >= 2* pierwiastek z ( a/b * b/a ) = 2
c) a^2/2b + 4b^2/a = (a^3 + 8b^3) / (2ab) >= a + 2b
(a+2b)(a^2 - 2ab + 4b^2 ) / (2ab) >= a + 2b /* 2ab
a+2b) ( a^2 - 2ab + 4b^2 ) >= (a + 2b)2ab / przez a +2b
a^2 - 2ab + 4b^2 >= 2ab
a^2 + 4b^2 >= 4ab
d) a^3 + b^3 = ( a + b ) ( a^2 - ab + b^2 ) >= a^2b + b^2a
a+b ) ( a^2 - ab + b^2 ) >= (a+b)ab
a^2 - ab + b^2 >= ab
2ab - ab >= ab
ab >= ab