(U2 + U5 + U8) = 42 (a +b)+(a+4b)+(a+7b) = 42 3a + 12b = 42 a + 4b = 14 ..... (ii)
eliminasi persamaan i dan ii 2a + 5b = 16 (x1) ⇒ 2a + 5b = 16 a + 4b = 14 (x2) ⇒ 2a + 8b = 28 - -3b = -12 b = 4 substitusi b = 4 ke persamaan i atau ii a + 4b = 14 a + 4(4) = 14 a = 14 - 16 a = -2
U7 = a + 6b = -2 + 6(4) = 22
2) f(x) = 2 cos 3x f'(x) = 2 (3) (-sin 3x) = -6 sin 3x f"(x) = -6 (3) cos 3x = -18 cos 3x
Buat menjadi persamaan:
(1) (a) + (a + 5b) = 16
(2) (a + b) + (a + 4b) + (a + 7b) = 42
=> (1) 2a + 5b = 16
=> (2) 3a + 12b = 42
Dari persamaan (2)x2 - persamaan(1)x3,
=> (6a + 24b - 84) - (6a + 15b - 48)
=> 9b = 36, maka b = 4. Jika b = 4, maka a = -2. U₇ = a + 6b = -2 + 24 = 22 (D).
2.) f(x) = 2cos3x
=> f'(x) = 2*3*-sin3x = -6sin3x
=> f"(x) = -6*3*cos3x = -18cos3x (E).
3.) f(x) =
=>
=>
Untuk f'(32), sederhanakan 32 menjadi 2⁵, maka:
=>
=> f(x) = 2*2⁻³ = 2⁻² = 1/4 = 0,25 (A)
a + (a+5b) = 16
2a + 5b = 16 ......(i)
(U2 + U5 + U8) = 42
(a +b)+(a+4b)+(a+7b) = 42
3a + 12b = 42
a + 4b = 14 ..... (ii)
eliminasi persamaan i dan ii
2a + 5b = 16 (x1) ⇒ 2a + 5b = 16
a + 4b = 14 (x2) ⇒ 2a + 8b = 28 -
-3b = -12
b = 4
substitusi b = 4 ke persamaan i atau ii
a + 4b = 14
a + 4(4) = 14
a = 14 - 16
a = -2
U7 = a + 6b = -2 + 6(4) = 22
2) f(x) = 2 cos 3x
f'(x) = 2 (3) (-sin 3x)
= -6 sin 3x
f"(x) = -6 (3) cos 3x
= -18 cos 3x
3) f(x) =
f'(x) =
f(32) = 2( )= 2(