1. Sprawdz czy poprawnie obliczono logarytmy
log6 = 1
log0,001= -3
log12 1 = 0
log27 3 = 1/3
log2 pierwiastek z 2 = 1/2
log81 27= 3/4
2. Wyznacz x. Podaj odpowiednie założenia
A: log2x = 3
log32x = 2/5
log16x = 2
logx = 2/3
logx = -0,5
B:logx 27 = 3
loggx (1/8) = -3
logx 16 = 4 l
ogx3 = 1/3
logx81 = 4/3
C: log2 8 pierwiastków z 2 = x
logx x do potegi 5 = 5
logx x do potęgi -3 = -3
logx x do potegi 2/3 = 2/3
Bardzo proszę o pomoc wgl tego nie rozumiem :(
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
log 6 = 1
żle, bo 10^1 = 10
log 0,001 = - 3
dobrze, bo 10^(-3) = 1/( 10^3) = 1 / 1000 = 0,001
log12 [ 1] = 0
dobrze, bo 12^0 = 1
log 27[ 3] = 1/3
dobrze, bo 27^(1/3) = 3, 3^3 = 27
log 2 [ p(2)] = 1/2
dobrze, bo 2^(1/2) = p(2)
p(2) - pierwiastek kwadratowy z 2
log 81 [ 27] = 3/4
dobrze
bo 81^(3/4) = [ 81^(1/4)]^3 = 3^3 = 27
=========================================
z.2
a) log 2 [ x] = 3 ; x > 0
x = 2^3 = 8
============
log32 [ x] = 2/5 ; x > 0
x = 32^(2/5) = [ 32^(1/5)]^2 = 2^2 = 4
======================================
log 16 [ x] = 2 ; x > 0
x = 16^2 = 256
================
log x = 2/3 ; x > 0
x = 10^(2/3)
============
log x = - 1/2; x > 0
x = 10^(-1/2) = 1/[ 10^(1/2)] = 1 / p(10)
p(10) - pierwiastek kwadratowy z 10
==================================
b)
log x [27 ] = 3
x^3 = 27 =3^3
x = 3
=====
log x ( 1/8) = - 3
x^(-3) = 1/8 = (1/2)^3 = 2^(-3)
x = 2
=====
log x [ 3 ] = 1/3
x^(1/3) = 3
x = 3^3 = 27
===============
log x [81] = 4/3
x^(4/3) = 81
x^(1/3) = 3
x = 3^3
x = 27
==============
c)
log 2 [ 8 p(2)] = x
2^x = 8 p(2) = p(2)^7 = [ 2^(1/2)]^7 = 2^(7/2)
x = 7/2 = 3,5
============
log x[ x^5] = 5
5* log x [ x] = 5
5*1 = 5 m
x > 0 i x róne od 1
=========================
log x [ x^(-3)] = - 3
x^(-3) = x^(-3)
x > 0 i x różne od 1
=====================
log x [ x^(2/3) ] = 2/3
x^(2/3) = x^(2/3)
x > 0 i x różne od 1
=========================