Ile rozwiązań ma rownanie:
a) x(x+2)=-1
b) x²-4x+9=-4x
c) x(x-8)=4(x-9)
d) 1-x2 (ułamek)/2 = x²-1 (ułamek)/3
a)
x(x+2)=-1
x² + 2x + 1 = 0
Δ = 4 - 4 = 0
Ponieważ Δ = 0 to równanie ma jedno rozwiązanie
x₁ = x₂ = xo = - b/2a = - 2/2 = - 1
b)
x²-4x+9=-4x
x² - 4x + 4x + 9 = 0
x² + 9 = 0
(x - 3)(x + 3) = 0
x - 3 = 0 lub x + 3 = 0
x = 3 lub x = - 3
c)
x(x-8)=4(x-9)
x² - 8x = 4x - 36
x² - 8x - 4x + 36 = 0
x² - 12x + 36 = 0
Δ = 144 - 144 = 0
x₁ = x₂ = xo = -b/2a = 12/2 = 6
d)
1-x2 (ułamek)/2 = x²-1 (ułamek)/3
1 - x²/2 = x² - 1/3
6 - 3x² =6x² - 2
6x² + 3x² - 2 - 6 = 0
9x² - 8 = 0
Równanie kwadratowe niezupełne
a * c < 0 bo 9 * - 8 = - 72
x₁ = - √-c/a = - √(- (-8/9) = - √8/9 = - 2√2/3
x₂ = √-c/a = √(-(-8/9) = √8/9 = 2√2/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
x(x+2)=-1
x² + 2x + 1 = 0
Δ = 4 - 4 = 0
Ponieważ Δ = 0 to równanie ma jedno rozwiązanie
x₁ = x₂ = xo = - b/2a = - 2/2 = - 1
b)
x²-4x+9=-4x
x² - 4x + 4x + 9 = 0
x² + 9 = 0
(x - 3)(x + 3) = 0
x - 3 = 0 lub x + 3 = 0
x = 3 lub x = - 3
c)
x(x-8)=4(x-9)
x² - 8x = 4x - 36
x² - 8x - 4x + 36 = 0
x² - 12x + 36 = 0
Δ = 144 - 144 = 0
x₁ = x₂ = xo = -b/2a = 12/2 = 6
d)
1-x2 (ułamek)/2 = x²-1 (ułamek)/3
1 - x²/2 = x² - 1/3
6 - 3x² =6x² - 2
6x² + 3x² - 2 - 6 = 0
9x² - 8 = 0
Równanie kwadratowe niezupełne
a * c < 0 bo 9 * - 8 = - 72
x₁ = - √-c/a = - √(- (-8/9) = - √8/9 = - 2√2/3
x₂ = √-c/a = √(-(-8/9) = √8/9 = 2√2/3