La función de costo total de una fábrica está dada por C(x)= 10 + 28x – 5x2 + x3/3 y la demanda del producto está dada P= 2750 – 5x, donde p y x denotan el precio en dólares y la cantidad respectiva se grava con $222 de impuesto para cada unidad producida, que el fabricante añade a su costo. Determine el nivel de producción (después de creado el impuesto) necesario para maximizar las utilidades. Muestre que la producción después del impuesto es menor que la producción antes del impuesto que maximiza las utilidades.