OBLICZ NAJPROSTSZYM SPOSOBEM! ( w odp. jest wynik -63)
[(2/3) ^ -6 - (1/3) ^-6] x 1,5 ^ -6 =
Własności potęg:
Rozdzielność dodawania względem mnożenia:
[a+b]*c=ac+bc
=====================================
=[(2/3)⁻⁶ * (3/2)⁻⁶] - [(1/3)⁻⁶ * (3/2)⁻⁶]=
=[(2/3 * 3/2)⁻⁶] - [(1/3 * 3/2)⁻⁶]=
=1⁻⁶ - (1/2)⁻⁶=
=1 - 2⁶=
=1-64=
=-63
[(2/3) ^ -6 - (1/3) ^-6] x 1,5 ^ -6 = (3/2)^6 - 3^6 ] x (3/2)^(-6) =
[ (3/2)^6 - 3^6 ] x (2/3)^6 = (3/2)^6 x (2/3)^6 - 3^6 x (2/3)^6 =
(3/2 x 2/3)^6 - (3 x 2/3)^6 = 1^6 - 2^6 = 1 - 64 = - 63
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Własności potęg:
Rozdzielność dodawania względem mnożenia:
[a+b]*c=ac+bc
=====================================
[(2/3) ^ -6 - (1/3) ^-6] x 1,5 ^ -6 =
=[(2/3)⁻⁶ * (3/2)⁻⁶] - [(1/3)⁻⁶ * (3/2)⁻⁶]=
=[(2/3 * 3/2)⁻⁶] - [(1/3 * 3/2)⁻⁶]=
=1⁻⁶ - (1/2)⁻⁶=
=1 - 2⁶=
=1-64=
=-63
[(2/3) ^ -6 - (1/3) ^-6] x 1,5 ^ -6 = (3/2)^6 - 3^6 ] x (3/2)^(-6) =
[ (3/2)^6 - 3^6 ] x (2/3)^6 = (3/2)^6 x (2/3)^6 - 3^6 x (2/3)^6 =
(3/2 x 2/3)^6 - (3 x 2/3)^6 = 1^6 - 2^6 = 1 - 64 = - 63