do rozwiazania nierownosci kwadratowe
a)−3(x−2)(x+4)>0
b)1/2(x+1)(x−1)≥0
c)−5(x−√2)(x+3√2)≥0
d)2(x−7)x<0
e)−x(2x−5)≤0
f)3(x+6)2≤0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)−3(x−2)(x+4)>0----- / : (-3)
(x - 2)(x +4) < 0
x ∈ (-4, 2)
b)1/2(x+1)(x−1)≥0 --- / : 1/2
(x + 1)(x - 1) ≥ 0
x ∈ (-oo, -1) u (1, +oo)
c)−5(x−√2)(x+3√2)≥0
(x−√2)(x+3√2) ≤ 0
x ∈ (-3√2, √2)
d)2(x−7)x<0
x(x - 7) < 0
x ∈ (0, 7)
e)−x(2x−5)≤0
x(2x - 5) ≥ 0
x ∈ (-oo, 0) u (2,5, + oo)
f)3(x+6)²≤0
(x+6)²≤0
x ∈ R
a) -3(x-2)(x+4)>0 /:(-3)
(x-2)(x+4)<0
x 1=2 x 2=-4
x nalezy (-4;2)
b) 1/2(x+1)(x-1)≥0 /·2
(x+1)(x-1)≥0
x 1=-1 x 2=1
xE(-∞;-1>U<1;∞0
c)-5(x-√2)(x+3√2)≥0 /(-5)
(x-√2)(x+3√2)≤0
x 1=√2 x 2=-3√2
xE(-∞;-3√2>U<√2:∞)
d) 2(x-7)x<0 /:2
x(x-7)<0
x 1=0 x 2=7
xE(0;7)
e)-x(2x-5)≤0 /·(-1)
x(2x-5)≥0
x 1=0 x 2=5/2
xE(-∞;0>U<5/2;∞)
f) 3(x+6)2≤0 /:6
x+6≤0
x≤-6
xE(-∞;-6>