November 2018 1 6 Report
Dany jest trojkat rownoram. Abc, w ktorum |AC| = |bc| orax a = (2;1) i c = (1;9). podsrawa ab tego trojkata jest zawarta w prosteh y= 1/2x . oblicz wspolrzrfne wierzcholka B.
5.0
1 głos
1 głos
Oceń!
Oceń!
terdzik

|AC|=|BC|

B=(x,y)

Skoro podstawa AB leży na prostej y= 0,5x, to wierzchołek B mozemy zapisac jako

B=(x, 0,5x)

|AC|=|BC|

\sqrt{(1-2)^2+(9-1)^2}=\sqrt{(1-x)^2+(9-0,5x)^2} \ \ /()^2\\ (-1)^2+8^2=(1-x)^2+(9-0,5x)^2\\ 1+64=1-2x+x^2+81-9x+0,25x^2\\ 65=82-11x+1,25x^2 \\ 1,25x^2-11x+17=0 \ \ /\cdot4\\ 5x^2-44x+56=0\\ delta = (-44)^2-4\cdot5 \cdot 68\\ delta = 1936 - 1360 \\ delta = 576\\ \sqrt{delta}=24\\ x_1=\frac{44-24}{10}=2\\ x_2=\frac{44+24}{10}=6,8\\ y_1 = 0,5 \cdot 2=1\\ y_2 = 0,5\cdot 6,8 =3,4\\ B=(6,8;3,4)

0 votes Thanks 1
More Questions From This User See All

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.