Kąt alfa-ostry oraz tgalfa= 4/5. Oblicz wartość wyrażenia:
3 sinα- 4cosα/2sinα
Proszę o pomoc!
skracamy ulamek
cosα/sinα= 1:sinα/cosα=1/tgα
(3sinα-4cosα):2sinα= 3/2-2*1/tgα=1,5-2*5/4=1,5-2,5= - 1
tgα=4/5
tgα=sinα/cosα
Zatem
sinα/cosα=4/5
sin²α+cos²α=1 dolaczamy 2. rownanie na jedynke trygonometryczna
sinα=4/5 cosα
16/25 cos²α+cos²α=1
41/25 cos²α=1
cos²α=25/41
cosα=5/√41
cosα=5√41/41
=============================
sinα=(4/5)·5√41/41
sinα=4√41/41
==============================
(3sinα-4cosα)/2sinα=(12√41/41-20√41/41)/8√41/41=(-8√41/41)·(41/8√41)=-1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
skracamy ulamek
cosα/sinα= 1:sinα/cosα=1/tgα
(3sinα-4cosα):2sinα= 3/2-2*1/tgα=1,5-2*5/4=1,5-2,5= - 1
tgα=4/5
tgα=sinα/cosα
Zatem
sinα/cosα=4/5
sin²α+cos²α=1 dolaczamy 2. rownanie na jedynke trygonometryczna
sinα=4/5 cosα
16/25 cos²α+cos²α=1
41/25 cos²α=1
cos²α=25/41
cosα=5/√41
cosα=5√41/41
=============================
sinα=(4/5)·5√41/41
sinα=4√41/41
==============================
(3sinα-4cosα)/2sinα=(12√41/41-20√41/41)/8√41/41=(-8√41/41)·(41/8√41)=-1