Znajdź x :
a) log₃ x = 3log₃ 2 + 2log₃3
b) log₄ x = 3log₄ 5 - 2/3log₄4 + 1/3log₄2
c) log₅ x = 2log₅3 - 1/2log₅16 + 2/3log₅8
d) log₃x = log₃15 - 1/3log₃27 - 2log₃5 + log₃50
e) log₂x = log√₂ 2 - 1/2log₃4 + log₃6 + log₃3
Ma wyjść w :
a)72 b) 62,5 c)9 d) 10 e) 16
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
log₃ x=3log₃2+2log₃3
log₃x=log₃8+log₃9
log₃x=log₃72
x=72
b)
log₄x=3log₄5-²/₃log₄4+¹/₃log₄2
log₄x=log₄125-log₄∛16+log₄∛2
log₄x=log₄(125·∛2/∛16)
log₄x=log₄(125/∛8)
log₄x=log₄62,5
x=62,5
c)
log₅x=2log₅3-0,5log₅16+²/₃log₅8
log₅x=log₅9-log₅4+log₅4
log₅x=log₅9
x=9
d)
log₃x=log₃15-¹/₃log₃27-2log₃5+log₃50
log₃x=log₃15-log₃3-log₃25+log₃50
log₃x=log₃10
x=10
e)
log₂x=log√₂2-0,5log₃4+log₃6+log₃3
log₂x=2-log₃2+log₃6+1
log₂x=3+log₃3
log₂x=3+1
log₂x=4
log₂x=log₂2⁴
log₂x=log₂16
x=16
a) 3log₃ 2 + 2log₃3 = log₃2³ + log₃3² =log₃8 + log₃9 = log₃(8 · 9) = log₃72
b) 3log₄ 5 - 2/3log₄4 + 1/3log₄2 = log₄5³ - log₄4^(2/3) + log₄2^(1/3) = log₄125 - log₄2^(4/3) + log₄2(1/3) = log₄(125·∛2:∛16)=log₄(125·∛(1/8)) = log₄(125·1/2) = log₄62,5
c) 2log₅3 - 1/2log₅16 + 2/3log₅8 = log₅3² - log₅16^(1/2) + log₅8^(2/3) = log₅9 - log₅4 + log₅4 = log₅(9*4:4) = log₅9
d) log₃15 - 1/3log₃27 - 2log₃5 + log₃50 = log₃12 - log₃27^(1/3) - log₃5² + log₃50 = log₃(15:3:25*50) = log₃10
e) log√₂ 2 - 1/2log₃4 + log₃6 + log₃3 = 2 - log₃4^(1/2) + log₃6 + log₃3 = 2 + log₃(6*3:2) = 2 + log₃9 = 2+2 = 4
log₂x = 4
2^4 = x
x = 16