zad. Oblicz współrzędne wierzchołka. W wykresu funkcji kwadratowej: a0 y=x do potęgi 2 +x-4 b) y= x do potęgi 2 -3x+2 c) y= x do potęgi 2 +4x+1 d) y= 1/2 x do potęgi2 -x+1 e) y= -x do potęgi 2 +3x+1 f) y= 2x do potęgi 2 + x - 1/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
y = x^2 + x - 4
a = 1, b = 1 , c = - 4
p = -b/(2a) = -1/(-2) = 1/2
q = (1/2)^2 + 1/2 - 4 = 1/4 + 2/4 - 4 =3/4 - 4 = - 3 1/4
zatem
W = (p; q) = ( 1/2; - 3 1/4)
==========================
b)
y = x^2 - 3x + 2
p = 3/(2) = 3/2 = 1,5
delta = b^2 - 4ac = (-3)^2 - 4*1*2 = 9 - 8 = 1
q = - delta/(4a) = -1/4
zatem
W = ( p;q ) = ( 3/2; - 1/4 )
============================
c)
y = x^2 + 4x + 1
p = -4/2 = - 2
q = (-2)^2 +4*(-2) + 1 = 4 - 8 + 1 = - 3
zatem
W = (p;q) = ( -2; - 3)
======================
d)
y = (1/2) x^2 - x + 1
p = 1/( 2*(1/2)) = 1/1 = 1
q = (1/2)*1^2 - 1 + 1 = (1/2)*1 = 1/2
zatem
W = ( p;q) = ( 1 ; 1/2)
=====================
e)
y = - x^2 +3x + 1
a = - 1, b = 3 , c = 1
p = -3/(-2) = 3/2
q = - (3/2)^2 + 3*(3/2) + 1 = - 9/4 + 9/2 + 1 = -9/4 + 18/4 + 4/4 = 13/4
q = 3 1/4
zatem
W = ( p; q ) = ( 3/2 ; 3 1/4)
==============================
f)
y = 2 x^2 + x - 1/2
p = - 1/4
delta = b^2 - 4ac = 1^2 - 4*2*(-1/2) = 1 + 4 = 5
q = - delta/(4a) = - 5/8
zatem
W = ( p; q) = ( - 1/4 ; - 5/8 )
==============================
q obliczano dwoma sposobami
1) jako wartośc funkcji dla x = p
2) ze wzoru
q = - delta/(4a), gdzie delta = b^2 - 4ac
------------------------------------------------