11/25
Wyznacz NWD(a,b) jeśli :
d) a = 396 , b = 2970
12/25
Wyznacz NWW(a,b) jeśli :
c)a=360 , b = 132
d)a= 294 , b = 490
14/25
Aby wyznaczyc najwiekszy wspolny dzielnik liczb 1224 i 216 mozemy posluzyc sie algorytmem Euklidesa w nastepujacy sposob :
1224= 5 * 216 + 144
216= 1 * 144 + 72
144 = 2 * 72 + 0
NWD(1224,216) = 72
postepujac podobnie wyznacz :
b)NWD(7371,1365)
c)NWD(1615,2618)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
11/25
d) NWD(a,b) =
a = 396 , b = 2970
Rozkładam obie liczby na czynniki pierwsze:
396 = 2*2*3*3*11
2 970 + 2*3*3*3*5*11
zatem NWD (396; 2970 ) = 2*3*3*11 = 18*11 = 198
=============================================
12/25
c) a = 360 , b = 132
Rozkładam liczby na czynniki pierwsze:
a = 360 = 2*2*2*3*3*5
b = 132 = 2*2*3*11
zatem NWW( 360, 132) = 2*2*3*11*2*3*5 = 72*55 =3960
==============================================
d) a = 294 , b = 490
Rozkładam liczby na czynniki pierwsze:
a = 294 = 2*3*7*7
b = 490 = 2*5*7*7
zatem
NWW( 294, 490) = 2*3*7*7*5 = 30*49 = 1470
=============================================
14/25
b)
7 371 ; 1 365
7 371 = 5*1365 + 546
1 365 = 2*546 + 273
546 = 2*273 + 0
zatem
NWD( 1 371; 1 365 ) = 273
========================================
c)
2 618 , 1 615
2 618 = 1*1615 + 1003
1 615 = 1* 1003 + 612
1003 = 1*612 + 391
512 = 1*391 + 221
391 = 1*221 + 170
221 = 1*170 + 51
170 = 3*51 + 17
51 = 3*17 + 0
zatem
NWD ( 2 618; 1 615 ) = 17
===========================