Rozwiąż równanie (2 − cos2x)*(2 + cos2x) = sinx *cosx + 7/2 w przedziale [0,pi]
( 2 - co s 2x )*( 2 + cos 2x) = sin x * cos x + 7/2
4 - ( cos 2x)^2 = (1/2) *sin 2x + 7/2
4 - [ 1 - ( sin 2x)^2] = (1/2) *sin 2x + 7/2
3 + (sin 2x)^2 - ( 1/2)*sin 2x - 7/2 = 0 / * 2
2*( sin 2x)^2 - sin 2x -1 = 0
------------------------------------
Podstawienie :
y = sin 2x
-----------------
2 y^2 - y - 1 = 0
================
delta = (-1)^2 - 4*2*(-1) = 1 + 8 = 9
p( delty) = 3
y = [ 1 - 3]/4 = - 1/2
lub
y = [ 1 + 3]/4 = 1
zatem
sin 2x = - 1/2 lub sin 2x = 1
I równanie nie ma rozwiązania w < 0; pi >
sin 2x = 1 <=> 2x = pi/2 <=> x = pi/4
=======================================
Odp. x = pi/4
===============
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
( 2 - co s 2x )*( 2 + cos 2x) = sin x * cos x + 7/2
4 - ( cos 2x)^2 = (1/2) *sin 2x + 7/2
4 - [ 1 - ( sin 2x)^2] = (1/2) *sin 2x + 7/2
3 + (sin 2x)^2 - ( 1/2)*sin 2x - 7/2 = 0 / * 2
2*( sin 2x)^2 - sin 2x -1 = 0
------------------------------------
Podstawienie :
y = sin 2x
-----------------
2 y^2 - y - 1 = 0
================
delta = (-1)^2 - 4*2*(-1) = 1 + 8 = 9
p( delty) = 3
y = [ 1 - 3]/4 = - 1/2
lub
y = [ 1 + 3]/4 = 1
zatem
sin 2x = - 1/2 lub sin 2x = 1
I równanie nie ma rozwiązania w < 0; pi >
sin 2x = 1 <=> 2x = pi/2 <=> x = pi/4
=======================================
Odp. x = pi/4
===============