oblicz sume n kolejnych wyrazów ciągu geometrycznego, jeśli a1=-2, q=1/2 (0,5), n=3
-- zadanie bardzo pilne
a1 = - 2
q = 1/2
n = 3
zatem
S3 = a1*[ 1 - q^3]/( 1 - q)
S3 = -2*[ 1 - (1/2)^3] /( 1 - 1/2) = - 2*[ 1 - 1/8] /(1/2)
S3 = -2* (7/8)*2 = - 4*(7/8) = - 7/2 = - 3,5
Odp. S3 = - 3,5
=============================
Sn = a1*[ 1 - q^n]/[1 - q]
========================
Sn = a1 * (1 -q^n) / (1 - q) --- wzór na sumę Sn w ciagu geometrycznym
a1 = -2
podstawiamy do wzoru i otrzymujemy
S3 = (-2) * (1 - (1/2)^3) / (1 - 1/2)
S3 = (-2) * (1 - 1/8) / (1/2)
S3 = (-2) * (7/8 : 1/2)
S3 = (-2) * (7/8 * 2/1)
S3 = (-2) * 7/4
S3 = -7/2
S3 = -3,5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a1 = - 2
q = 1/2
n = 3
zatem
S3 = a1*[ 1 - q^3]/( 1 - q)
S3 = -2*[ 1 - (1/2)^3] /( 1 - 1/2) = - 2*[ 1 - 1/8] /(1/2)
S3 = -2* (7/8)*2 = - 4*(7/8) = - 7/2 = - 3,5
Odp. S3 = - 3,5
=============================
Sn = a1*[ 1 - q^n]/[1 - q]
========================
Sn = a1 * (1 -q^n) / (1 - q) --- wzór na sumę Sn w ciagu geometrycznym
n = 3
a1 = -2
q = 1/2
podstawiamy do wzoru i otrzymujemy
S3 = (-2) * (1 - (1/2)^3) / (1 - 1/2)
S3 = (-2) * (1 - 1/8) / (1/2)
S3 = (-2) * (7/8 : 1/2)
S3 = (-2) * (7/8 * 2/1)
S3 = (-2) * 7/4
S3 = -7/2
S3 = -3,5